BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 28836768)

  • 1. A Single Active Site Mutation in the Pikromycin Thioesterase Generates a More Effective Macrocyclization Catalyst.
    Koch AA; Hansen DA; Shende VV; Furan LR; Houk KN; Jiménez-Osés G; Sherman DH
    J Am Chem Soc; 2017 Sep; 139(38):13456-13465. PubMed ID: 28836768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of a Thioesterase Bottleneck in the Pikromycin Pathway through Full-Module Processing of Unnatural Pentaketides.
    Hansen DA; Koch AA; Sherman DH
    J Am Chem Soc; 2017 Sep; 139(38):13450-13455. PubMed ID: 28836772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biochemical investigation of pikromycin biosynthesis employing native penta- and hexaketide chain elongation intermediates.
    Aldrich CC; Beck BJ; Fecik RA; Sherman DH
    J Am Chem Soc; 2005 Jun; 127(23):8441-52. PubMed ID: 15941278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights into specificity and catalytic mechanism of amphotericin B/nystatin thioesterase.
    Wang R; Tao W; Liu L; Li C; Bai L; Zhao YL; Shi T
    Proteins; 2021 May; 89(5):558-568. PubMed ID: 33389775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemoenzymatic synthesis of the polyketide macrolactone 10-deoxymethynolide.
    Aldrich CC; Venkatraman L; Sherman DH; Fecik RA
    J Am Chem Soc; 2005 Jun; 127(25):8910-1. PubMed ID: 15969542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interrogating the molecular basis for multiple macrolactone ring formation by the pikromycin polyketide synthase.
    Kittendorf JD; Beck BJ; Buchholz TJ; Seufert W; Sherman DH
    Chem Biol; 2007 Aug; 14(8):944-54. PubMed ID: 17719493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and function of an iterative polyketide synthase thioesterase domain catalyzing Claisen cyclization in aflatoxin biosynthesis.
    Korman TP; Crawford JM; Labonte JW; Newman AG; Wong J; Townsend CA; Tsai SC
    Proc Natl Acad Sci U S A; 2010 Apr; 107(14):6246-51. PubMed ID: 20332208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thioesterase domain swapping of a linear polyketide tautomycetin with a macrocyclic polyketide pikromycin in Streptomyces sp. CK4412.
    Tripathi A; Choi SS; Sherman DH; Kim ES
    J Ind Microbiol Biotechnol; 2016 Aug; 43(8):1189-93. PubMed ID: 27277081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and biochemical analysis of complex chain-elongation intermediates for interrogation of molecular specificity in the erythromycin and pikromycin polyketide synthases.
    Mortison JD; Kittendorf JD; Sherman DH
    J Am Chem Soc; 2009 Nov; 131(43):15784-93. PubMed ID: 19810731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substrate controlled divergence in polyketide synthase catalysis.
    Hansen DA; Koch AA; Sherman DH
    J Am Chem Soc; 2015 Mar; 137(11):3735-8. PubMed ID: 25730816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An evolutionary model encompassing substrate specificity and reactivity of type I polyketide synthase thioesterases.
    Hari TP; Labana P; Boileau M; Boddy CN
    Chembiochem; 2014 Dec; 15(18):2656-61. PubMed ID: 25354333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Macrodiolide formation by the thioesterase of a modular polyketide synthase.
    Zhou Y; Prediger P; Dias LC; Murphy AC; Leadlay PF
    Angew Chem Int Ed Engl; 2015 Apr; 54(17):5232-5. PubMed ID: 25753953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochemical evidence for an editing role of thioesterase II in the biosynthesis of the polyketide pikromycin.
    Kim BS; Cropp TA; Beck BJ; Sherman DH; Reynolds KA
    J Biol Chem; 2002 Dec; 277(50):48028-34. PubMed ID: 12368286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thioesterase domains of fungal nonreducing polyketide synthases act as decision gates during combinatorial biosynthesis.
    Xu Y; Zhou T; Zhang S; Xuan LJ; Zhan J; Molnár I
    J Am Chem Soc; 2013 Jul; 135(29):10783-91. PubMed ID: 23822773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acyl-CoA subunit selectivity in the pikromycin polyketide synthase PikAIV: steady-state kinetics and active-site occupancy analysis by FTICR-MS.
    Bonnett SA; Rath CM; Shareef AR; Joels JR; Chemler JA; Håkansson K; Reynolds K; Sherman DH
    Chem Biol; 2011 Sep; 18(9):1075-81. PubMed ID: 21944746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of molecular recognition in the pikromycin polyketide synthase.
    Chen S; Xue Y; Sherman DH; Reynolds KA
    Chem Biol; 2000 Dec; 7(12):907-18. PubMed ID: 11137814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing Selectivity and Creating Structural Diversity Through Hybrid Polyketide Synthases.
    Koch AA; Schmidt JJ; Lowell AN; Hansen DA; Coburn KM; Chemler JA; Sherman DH
    Angew Chem Int Ed Engl; 2020 Aug; 59(32):13575-13580. PubMed ID: 32357274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism and specificity of the terminal thioesterase domain from the erythromycin polyketide synthase.
    Gokhale RS; Hunziker D; Cane DE; Khosla C
    Chem Biol; 1999 Feb; 6(2):117-25. PubMed ID: 10021418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The thioesterase domain from the pimaricin and erythromycin biosynthetic pathways can catalyze hydrolysis of simple thioester substrates.
    Sharma KK; Boddy CN
    Bioorg Med Chem Lett; 2007 Jun; 17(11):3034-7. PubMed ID: 17428661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and functional analysis of RifR, the type II thioesterase from the rifamycin biosynthetic pathway.
    Claxton HB; Akey DL; Silver MK; Admiraal SJ; Smith JL
    J Biol Chem; 2009 Feb; 284(8):5021-9. PubMed ID: 19103602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.