These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 28837040)
1. Green bioprinting: extrusion-based fabrication of plant cell-laden biopolymer hydrogel scaffolds. Seidel J; Ahlfeld T; Adolph M; Kümmritz S; Steingroewer J; Krujatz F; Bley T; Gelinsky M; Lode A Biofabrication; 2017 Nov; 9(4):045011. PubMed ID: 28837040 [TBL] [Abstract][Full Text] [Related]
2. Three-dimensional plotting of a cell-laden alginate/methylcellulose blend: towards biofabrication of tissue engineering constructs with clinically relevant dimensions. Schütz K; Placht AM; Paul B; Brüggemeier S; Gelinsky M; Lode A J Tissue Eng Regen Med; 2017 May; 11(5):1574-1587. PubMed ID: 26202781 [TBL] [Abstract][Full Text] [Related]
3. 3D Bioprinting of Functional Islets of Langerhans in an Alginate/Methylcellulose Hydrogel Blend. Duin S; Schütz K; Ahlfeld T; Lehmann S; Lode A; Ludwig B; Gelinsky M Adv Healthc Mater; 2019 Apr; 8(7):e1801631. PubMed ID: 30835971 [TBL] [Abstract][Full Text] [Related]
4. Bioprinting of mineralized constructs utilizing multichannel plotting of a self-setting calcium phosphate cement and a cell-laden bioink. Ahlfeld T; Doberenz F; Kilian D; Vater C; Korn P; Lauer G; Lode A; Gelinsky M Biofabrication; 2018 Jul; 10(4):045002. PubMed ID: 30004388 [TBL] [Abstract][Full Text] [Related]
5. Development of a clay based bioink for 3D cell printing for skeletal application. Ahlfeld T; Cidonio G; Kilian D; Duin S; Akkineni AR; Dawson JI; Yang S; Lode A; Oreffo ROC; Gelinsky M Biofabrication; 2017 Jul; 9(3):034103. PubMed ID: 28691691 [TBL] [Abstract][Full Text] [Related]
6. A comparison of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage. Daly AC; Critchley SE; Rencsok EM; Kelly DJ Biofabrication; 2016 Oct; 8(4):045002. PubMed ID: 27716628 [TBL] [Abstract][Full Text] [Related]
7. Engineering considerations on extrusion-based bioprinting: interactions of material behavior, mechanical forces and cells in the printing needle. Emmermacher J; Spura D; Cziommer J; Kilian D; Wollborn T; Fritsching U; Steingroewer J; Walther T; Gelinsky M; Lode A Biofabrication; 2020 Mar; 12(2):025022. PubMed ID: 32050179 [TBL] [Abstract][Full Text] [Related]
8. A versatile method for combining different biopolymers in a core/shell fashion by 3D plotting to achieve mechanically robust constructs. Akkineni AR; Ahlfeld T; Lode A; Gelinsky M Biofabrication; 2016 Oct; 8(4):045001. PubMed ID: 27716641 [TBL] [Abstract][Full Text] [Related]
9. Mechanical behaviour of alginate-gelatin hydrogels for 3D bioprinting. Giuseppe MD; Law N; Webb B; A Macrae R; Liew LJ; Sercombe TB; Dilley RJ; Doyle BJ J Mech Behav Biomed Mater; 2018 Mar; 79():150-157. PubMed ID: 29304429 [TBL] [Abstract][Full Text] [Related]
10. Development of a novel alginate-polyvinyl alcohol-hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds. Bendtsen ST; Quinnell SP; Wei M J Biomed Mater Res A; 2017 May; 105(5):1457-1468. PubMed ID: 28187519 [TBL] [Abstract][Full Text] [Related]
11. Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability. Paxton N; Smolan W; Böck T; Melchels F; Groll J; Jungst T Biofabrication; 2017 Nov; 9(4):044107. PubMed ID: 28930091 [TBL] [Abstract][Full Text] [Related]
12. Alginate dependent changes of physical properties in 3D bioprinted cell-laden porous scaffolds affect cell viability and cell morphology. Zhang J; Wehrle E; Vetsch JR; Paul GR; Rubert M; Müller R Biomed Mater; 2019 Sep; 14(6):065009. PubMed ID: 31426033 [TBL] [Abstract][Full Text] [Related]
13. Bioprinting endothelial cells with alginate for 3D tissue constructs. Khalil S; Sun W J Biomech Eng; 2009 Nov; 131(11):111002. PubMed ID: 20353253 [TBL] [Abstract][Full Text] [Related]
14. Bioprinting three-dimensional cell-laden tissue constructs with controllable degradation. Wu Z; Su X; Xu Y; Kong B; Sun W; Mi S Sci Rep; 2016 Apr; 6():24474. PubMed ID: 27091175 [TBL] [Abstract][Full Text] [Related]
15. Engineering a morphogenetically active hydrogel for bioprinting of bioartificial tissue derived from human osteoblast-like SaOS-2 cells. Neufurth M; Wang X; Schröder HC; Feng Q; Diehl-Seifert B; Ziebart T; Steffen R; Wang S; Müller WEG Biomaterials; 2014 Oct; 35(31):8810-8819. PubMed ID: 25047630 [TBL] [Abstract][Full Text] [Related]
16. Characterisation of hyaluronic acid methylcellulose hydrogels for 3D bioprinting. Law N; Doney B; Glover H; Qin Y; Aman ZM; Sercombe TB; Liew LJ; Dilley RJ; Doyle BJ J Mech Behav Biomed Mater; 2018 Jan; 77():389-399. PubMed ID: 29017117 [TBL] [Abstract][Full Text] [Related]
17. Cytocompatibility testing of hydrogels toward bioprinting of mesenchymal stem cells. Benning L; Gutzweiler L; Tröndle K; Riba J; Zengerle R; Koltay P; Zimmermann S; Stark GB; Finkenzeller G J Biomed Mater Res A; 2017 Dec; 105(12):3231-3241. PubMed ID: 28782179 [TBL] [Abstract][Full Text] [Related]
18. Enhanced rheological behaviors of alginate hydrogels with carrageenan for extrusion-based bioprinting. Kim MH; Lee YW; Jung WK; Oh J; Nam SY J Mech Behav Biomed Mater; 2019 Oct; 98():187-194. PubMed ID: 31252328 [TBL] [Abstract][Full Text] [Related]
19. Three-dimensional bioprinting of cell-laden constructs with polycaprolactone protective layers for using various thermoplastic polymers. Kim BS; Jang J; Chae S; Gao G; Kong JS; Ahn M; Cho DW Biofabrication; 2016 Aug; 8(3):035013. PubMed ID: 27550946 [TBL] [Abstract][Full Text] [Related]