BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 28837198)

  • 1. Long-range surface plasmon resonance and surface-enhanced Raman scattering on X-shaped gold plasmonic nanohole arrays.
    Hou C; Galvan DD; Meng G; Yu Q
    Phys Chem Chem Phys; 2017 Sep; 19(35):24126-24134. PubMed ID: 28837198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Boosting Long-Range Surface-Enhanced Raman Scattering on Plasmonic Nanohole Arrays for Ultrasensitive Detection of MiRNA.
    Luo X; Zhu J; Jia W; Fang N; Wu P; Cai C; Zhu JJ
    ACS Appl Mater Interfaces; 2021 Apr; 13(15):18301-18313. PubMed ID: 33821612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmonic Sensing on Symmetric Nanohole Arrays Supporting High-Q Hybrid Modes and Reflection Geometry.
    Vala M; Ertsgaard CT; Wittenberg NJ; Oh SH
    ACS Sens; 2019 Dec; 4(12):3265-3274. PubMed ID: 31762262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tailoring plasmonic properties of gold nanohole arrays for surface-enhanced Raman scattering.
    Zheng P; Cushing SK; Suri S; Wu N
    Phys Chem Chem Phys; 2015 Sep; 17(33):21211-9. PubMed ID: 25586930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing the Location of Surface Plasmons Over Nanotriangle and Nanohole Arrays of Different Size and Periodicity.
    Correia-Ledo D; Gibson KF; Dhawan A; Couture M; Vo-Dinh T; Graham D; Masson JF
    J Phys Chem C Nanomater Interfaces; 2012 Mar; 116(12):6884-6892. PubMed ID: 23977402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. X-shaped quasi-3D plasmonic nanostructure arrays for enhancing electric field and Raman scattering.
    Wang D; Yu X; Yu Q
    Nanotechnology; 2012 Oct; 23(40):405201. PubMed ID: 22983626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmonic Gold Nanohole Array for Surface-Enhanced Raman Scattering Detection of DNA Methylation.
    Luo X; Xing Y; Galvan DD; Zheng E; Wu P; Cai C; Yu Q
    ACS Sens; 2019 Jun; 4(6):1534-1542. PubMed ID: 31074265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface-enhanced Raman scattering on gold quasi-3D nanostructure and 2D nanohole arrays.
    Yu Q; Braswell S; Christin B; Xu J; Wallace PM; Gong H; Kaminsky D
    Nanotechnology; 2010 Sep; 21(35):355301. PubMed ID: 20683142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanocap array of Au:Ag composite for surface-enhanced Raman scattering.
    Zhang Y; Wang C; Wang J; Chen L; Li J; Liu Y; Zhao X; Wang Y; Yang J
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Jan; 152():461-7. PubMed ID: 26253437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuning the 3D plasmon field of nanohole arrays.
    Couture M; Liang Y; Poirier Richard HP; Faid R; Peng W; Masson JF
    Nanoscale; 2013 Dec; 5(24):12399-408. PubMed ID: 24162773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of Ag coated hydrogen silsesquioxane square array hybrid structure design for surface-enhanced Raman scattering substrate.
    Wang H; Huo Z; Zhang Z; Chen S; Jiang S
    Opt Express; 2018 Jan; 26(2):1097-1107. PubMed ID: 29401988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding the effects of dielectric medium, substrate, and depth on electric fields and SERS of quasi-3D plasmonic nanostructures.
    Xu J; Kvasnička P; Idso M; Jordan RW; Gong H; Homola J; Yu Q
    Opt Express; 2011 Oct; 19(21):20493-505. PubMed ID: 21997057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quasi-3D gold nanoring cavity arrays with high-density hot-spots for SERS applications via nanosphere lithography.
    Ho CC; Zhao K; Lee TY
    Nanoscale; 2014 Aug; 6(15):8606-11. PubMed ID: 24978350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atomically flat symmetric elliptical nanohole arrays in a gold film for ultrasensitive refractive index sensing.
    Cervantes Tellez GA; Hassan S; Tait RN; Berini P; Gordon R
    Lab Chip; 2013 Jul; 13(13):2541-6. PubMed ID: 23478567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EOT or Kretschmann configuration? Comparative study of the plasmonic modes in gold nanohole arrays.
    Couture M; Live LS; Dhawan A; Masson JF
    Analyst; 2012 Sep; 137(18):4162-70. PubMed ID: 22832550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bridged-bowtie and cross bridged-bowtie nanohole arrays as SERS substrates with hotspot tunability and multi-wavelength SERS response.
    Gupta N; Dhawan A
    Opt Express; 2018 Jul; 26(14):17899-17915. PubMed ID: 30114073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of Long-Range Surface Plasmon Resonance for ABO Blood Typing.
    Tangkawsakul W; Srikhirin T; Shinbo K; Kato K; Kaneko F; Baba A
    Int J Anal Chem; 2016; 2016():1432781. PubMed ID: 28101104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface-Enhanced Raman Scattering and Fluorescence on Gold Nanogratings.
    Chang YC; Huang BH; Lin TH
    Nanomaterials (Basel); 2020 Apr; 10(4):. PubMed ID: 32316451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical arrangement for surface plasmon-assisted directional enhanced Raman scattering spectroscopy.
    Beketov GV; Shynkarenko OV; Yukhymchuk VO
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Aug; 219():488-495. PubMed ID: 31077952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tuning the SERS Response with Ag-Au Nanoparticle-Embedded Polymer Thin Film Substrates.
    Rao VK; Radhakrishnan TP
    ACS Appl Mater Interfaces; 2015 Jun; 7(23):12767-73. PubMed ID: 26035249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.