BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 28837198)

  • 21. Long-range surface plasmon resonance imaging for bioaffinity sensors.
    Wark AW; Lee HJ; Corn RM
    Anal Chem; 2005 Jul; 77(13):3904-7. PubMed ID: 15987090
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gold nanopillar arrays as biosensors fabricated by electron beam lithography combined with electroplating.
    Liu J; Zhang S; Ma Y; Shao J; Lu B; Chen Y
    Appl Opt; 2015 Mar; 54(9):2537-42. PubMed ID: 25968546
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Large-Scale Plasmonic Hybrid Framework with Built-In Nanohole Array as Multifunctional Optical Sensing Platforms.
    Wang X; Ma X; Shi E; Lu P; Dou L; Zhang X; Wang H
    Small; 2020 Mar; 16(11):e1906459. PubMed ID: 32072751
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quasi-3D Plasmonic Nanowell Array for Molecular Enrichment and SERS-Based Detection.
    Kim S; Mun C; Choi DG; Jung HS; Kim DH; Kim SH; Park SG
    Nanomaterials (Basel); 2020 May; 10(5):. PubMed ID: 32422860
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multiple surface plasmon resonances and near-infrared field enhancement of gold nanowells.
    Li K; Clime L; Tay L; Cui B; Geissler M; Veres T
    Anal Chem; 2008 Jul; 80(13):4945-50. PubMed ID: 18507399
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Impact of Optical Cavity on Refractive Index Sensitivity of Gold Nanohole Arrays.
    Shokova MA; Bochenkov VE
    Biosensors (Basel); 2023 Dec; 13(12):. PubMed ID: 38131798
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-sensitivity Raman scattering substrate based on Au/La(0.7)Sr(0.3)MnO(3) periodic arrays.
    Wu MC; Chou Y; Chuang CM; Hsu CP; Lin JF; Chen YF; Su WF
    ACS Appl Mater Interfaces; 2009 Nov; 1(11):2484-90. PubMed ID: 20356118
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Large-scale uniform Au nanodisk arrays fabricated via x-ray interference lithography for reproducible and sensitive SERS substrate.
    Zhang P; Yang S; Wang L; Zhao J; Zhu Z; Liu B; Zhong J; Sun X
    Nanotechnology; 2014 Jun; 25(24):245301. PubMed ID: 24859832
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Surface-Enhanced Raman Scattering (SERS) Studies of Disc-on-Pillar (DOP) Arrays: Contrasting Enhancement Factor with Analytical Performance.
    Velez RA; Lavrik NV; Kravchenko II; Sepaniak MJ; Jesus MA
    Appl Spectrosc; 2019 Jun; 73(6):665-677. PubMed ID: 30990053
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sensing with prism-based near-infrared surface plasmon resonance spectroscopy on nanohole array platforms.
    Kegel LL; Boyne D; Booksh KS
    Anal Chem; 2014 Apr; 86(7):3355-64. PubMed ID: 24499170
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Surface-enhanced Raman scattering by the composite structure of Ag NP-multilayer Au films separated by Al
    Zha Z; Liu R; Yang W; Li C; Gao J; Shafi M; Fan X; Li Z; Du X; Jiang S
    Opt Express; 2021 Mar; 29(6):8890-8901. PubMed ID: 33820330
    [TBL] [Abstract][Full Text] [Related]  

  • 32. SARS-CoV-2 proteins monitored by long-range surface plasmon field-enhanced Raman scattering with hybrid bowtie nanoaperture arrays and nanocavities.
    Luo X; Yue W; Zhang S; Liu H; Chen Z; Qiao L; Wu C; Li P; He Y
    Lab Chip; 2023 Jan; 23(2):388-399. PubMed ID: 36621932
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Localized surface plasmons, surface plasmon polaritons, and their coupling in 2D metallic array for SERS.
    Du L; Zhang X; Mei T; Yuan X
    Opt Express; 2010 Feb; 18(3):1959-65. PubMed ID: 20174025
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Surface-enhanced Raman spectroscopy with Au-nanoparticle substrate fabricated by using femtosecond pulse.
    Zhang W; Li C; Gao K; Lu F; Liu M; Li X; Zhang L; Mao D; Gao F; Huang L; Mei T; Zhao J
    Nanotechnology; 2018 May; 29(20):205301. PubMed ID: 29485408
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Configuration-controlled Au nanocluster arrays on inverse micelle nano-patterns: versatile platforms for SERS and SPR sensors.
    Jang YH; Chung K; Quan LN; Špačková B; Šípová H; Moon S; Cho WJ; Shin HY; Jang YJ; Lee JE; Kochuveedu ST; Yoon MJ; Kim J; Yoon S; Kim JK; Kim D; Homola J; Kim DH
    Nanoscale; 2013 Dec; 5(24):12261-71. PubMed ID: 24150526
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Surface plasmon modes of nanomesh-on-mirror nanocavities prepared by nanosphere lithography.
    Stelling C; Fossati S; Dostalek J; Retsch M
    Nanoscale; 2018 Sep; 10(37):17983-17989. PubMed ID: 30226239
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Au@Ag core-shell nanocubes: epitaxial growth synthesis and surface-enhanced Raman scattering performance.
    Liu Y; Zhou J; Wang B; Jiang T; Ho HP; Petti L; Mormile P
    Phys Chem Chem Phys; 2015 Mar; 17(10):6819-26. PubMed ID: 25670345
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Theoretical and experimental study of a highly sensitive SPR biosensor based on Au grating and Au film coupling structure.
    Cai H; Wang M; Liu J; Wang X
    Opt Express; 2022 Jul; 30(15):26136-26148. PubMed ID: 36236810
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Graphene-enhanced plasmonic nanohole arrays for environmental sensing in aqueous samples.
    Genslein C; Hausler P; Kirchner EM; Bierl R; Baeumner AJ; Hirsch T
    Beilstein J Nanotechnol; 2016; 7():1564-1573. PubMed ID: 28144507
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High Figure of Merit (FOM) of Bragg Modes in Au-Coated Nanodisk Arrays for Plasmonic Sensing.
    Couture M; Brulé T; Laing S; Cui W; Sarkar M; Charron B; Faulds K; Peng W; Canva M; Masson JF
    Small; 2017 Oct; 13(38):. PubMed ID: 28834166
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.