BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 28837225)

  • 21. Amorphous selenium flat panel detectors for digital mammography: validation of a NPWE model observer with CDMAM observer performance experiments.
    Segui JA; Zhao W
    Med Phys; 2006 Oct; 33(10):3711-22. PubMed ID: 17089837
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Human observer performance on in-plane digital breast tomosynthesis images: Effects of reconstruction filters and data acquisition angles on signal detection.
    Lee C; Han M; Baek J
    PLoS One; 2020; 15(3):e0229915. PubMed ID: 32163472
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Visual-search observers for assessing tomographic x-ray image quality.
    Gifford HC; Liang Z; Das M
    Med Phys; 2016 Mar; 43(3):1563-75. PubMed ID: 26936739
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of simulated microcalcifications in white noise and mammographic backgrounds.
    Reiser I; Nishikawa RM
    Med Phys; 2006 Aug; 33(8):2905-11. PubMed ID: 16964867
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Task-based detectability in anatomical background in digital mammography, digital breast tomosynthesis and synthetic mammography.
    Monnin P; Damet J; Bosmans H; Marshall NW
    Phys Med Biol; 2024 Jan; 69(2):. PubMed ID: 38214048
    [No Abstract]   [Full Text] [Related]  

  • 26. Adaptation of a channelized Hotelling observer model to accommodate anthropomorphic backgrounds and moving test objects in X-ray angiography.
    Gomez-Cardona D; Favazza CP; Leng S; Schueler BA; Fetterly KA
    Med Phys; 2023 Nov; 50(11):6737-6747. PubMed ID: 37712881
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Systematic approach to a channelized Hotelling model observer implementation for a physical phantom containing mass-like lesions: Application to digital breast tomosynthesis.
    Petrov D; Marshall NW; Young KC; Bosmans H
    Phys Med; 2019 Feb; 58():8-20. PubMed ID: 30824154
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Image quality assessment in digital mammography: part II. NPWE as a validated alternative for contrast detail analysis.
    Monnin P; Marshall NW; Bosmans H; Bochud FO; Verdun FR
    Phys Med Biol; 2011 Jul; 56(14):4221-38. PubMed ID: 21701050
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Performance evaluation of contrast-detail in full field digital mammography systems using ideal (Hotelling) observer vs. conventional automated analysis of CDMAM images for quality control of contrast-detail characteristics.
    Delakis I; Wise R; Morris L; Kulama E
    Phys Med; 2015 Nov; 31(7):741-6. PubMed ID: 25735660
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of human and Hotelling observer performance for a fan-beam CT signal detection task.
    Sanchez AA; Sidky EY; Reiser I; Pan X
    Med Phys; 2013 Mar; 40(3):031104. PubMed ID: 23464284
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CNN as model observer in a liver lesion detection task for x-ray computed tomography: A phantom study.
    Kopp FK; Catalano M; Pfeiffer D; Fingerle AA; Rummeny EJ; Noël PB
    Med Phys; 2018 Oct; 45(10):4439-4447. PubMed ID: 30137658
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spatio-temporal generalized Model Observers methods for Low Contrast Detectability assessment in digital angiography: Application to moving targets.
    Ingraito C; Villa R; Paruccini N; De Ponti E
    Phys Med; 2023 Apr; 108():102556. PubMed ID: 36898289
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Storage phosphor and film-screen mammography: performance with different mammographic techniques.
    Kheddache S; Thilander-Klang A; Lanhede B; Månsson LG; Bjurstam N; Ackerholm P; Björneld L
    Eur Radiol; 1999; 9(4):591-7. PubMed ID: 10354868
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Objective assessment of low contrast detectability in computed tomography with Channelized Hotelling Observer.
    Racine D; Ba AH; Ott JG; Bochud FO; Verdun FR
    Phys Med; 2016 Jan; 32(1):76-83. PubMed ID: 26515665
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The impact on lesion detection via a multi-vendor study: A phantom-based comparison of digital mammography, digital breast tomosynthesis, and synthetic mammography.
    Vancoillie L; Cockmartin L; Marshall N; Bosmans H
    Med Phys; 2021 Oct; 48(10):6270-6292. PubMed ID: 34407213
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A statistical alternative to current measures of image quality in digital mammography.
    Caldwell D; Baldelli P; Phelan N; Kenny P
    Phys Med Biol; 2022 Feb; 67(3):. PubMed ID: 35038692
    [No Abstract]   [Full Text] [Related]  

  • 37. Image simulation and a model of noise power spectra across a range of mammographic beam qualities.
    Mackenzie A; Dance DR; Diaz O; Young KC
    Med Phys; 2014 Dec; 41(12):121901. PubMed ID: 25471961
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Detection of simulated microcalcifications in a phantom with digital mammography: effect of pixel size.
    Suryanarayanan S; Karellas A; Vedantham S; Sechopoulos I; D'Orsi CJ
    Radiology; 2007 Jul; 244(1):130-7. PubMed ID: 17522348
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Human and model observer performance for lesion detection in breast cone beam CT images with the FDK reconstruction.
    Han M; Kim B; Baek J
    PLoS One; 2018; 13(3):e0194408. PubMed ID: 29543868
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adaptation of a clustered lumpy background model for task-based image quality assessment in x-ray phase-contrast mammography.
    Zysk AM; Brankov JG; Wernick MN; Anastasio MA
    Med Phys; 2012 Feb; 39(2):906-11. PubMed ID: 22320800
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.