These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

399 related articles for article (PubMed ID: 28837313)

  • 1. Artificial Synapses with Short- and Long-Term Memory for Spiking Neural Networks Based on Renewable Materials.
    Park Y; Lee JS
    ACS Nano; 2017 Sep; 11(9):8962-8969. PubMed ID: 28837313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fully Printed All-Solid-State Organic Flexible Artificial Synapse for Neuromorphic Computing.
    Liu Q; Liu Y; Li J; Lau C; Wu F; Zhang A; Li Z; Chen M; Fu H; Draper J; Cao X; Zhou C
    ACS Appl Mater Interfaces; 2019 May; 11(18):16749-16757. PubMed ID: 31025562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexible three-dimensional artificial synapse networks with correlated learning and trainable memory capability.
    Wu C; Kim TW; Choi HY; Strukov DB; Yang JJ
    Nat Commun; 2017 Sep; 8(1):752. PubMed ID: 28963546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Organic Flexible Artificial Bio-Synapses with Long-Term Plasticity for Neuromorphic Computing.
    Wang TY; He ZY; Chen L; Zhu H; Sun QQ; Ding SJ; Zhou P; Zhang DW
    Micromachines (Basel); 2018 May; 9(5):. PubMed ID: 30424171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The coexistence of threshold and memory switching characteristics of ALD HfO
    Abbas H; Abbas Y; Hassan G; Sokolov AS; Jeon YR; Ku B; Kang CJ; Choi C
    Nanoscale; 2020 Jul; 12(26):14120-14134. PubMed ID: 32597451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organic Synapses for Neuromorphic Electronics: From Brain-Inspired Computing to Sensorimotor Nervetronics.
    Lee Y; Lee TW
    Acc Chem Res; 2019 Apr; 52(4):964-974. PubMed ID: 30896916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Realization of Biomimetic Synaptic Functions in a One-Cell Organic Resistive Switching Device Using the Diffusive Parameter of Conductive Filaments.
    Lee SH; Park HL; Kim MH; Kim MH; Park BG; Lee SD
    ACS Appl Mater Interfaces; 2020 Nov; 12(46):51719-51728. PubMed ID: 33151051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bipolar Analog Memristors as Artificial Synapses for Neuromorphic Computing.
    Wang R; Shi T; Zhang X; Wang W; Wei J; Lu J; Zhao X; Wu Z; Cao R; Long S; Liu Q; Liu M
    Materials (Basel); 2018 Oct; 11(11):. PubMed ID: 30373122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Short-Term Plasticity and Long-Term Potentiation in Artificial Biosynapses with Diffusive Dynamics.
    Kim MK; Lee JS
    ACS Nano; 2018 Feb; 12(2):1680-1687. PubMed ID: 29357225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flexible Artificial Sensory Systems Based on Neuromorphic Devices.
    Sun F; Lu Q; Feng S; Zhang T
    ACS Nano; 2021 Mar; 15(3):3875-3899. PubMed ID: 33507725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flexible Transparent Organic Artificial Synapse Based on the Tungsten/Egg Albumen/Indium Tin Oxide/Polyethylene Terephthalate Memristor.
    Yan X; Li X; Zhou Z; Zhao J; Wang H; Wang J; Zhang L; Ren D; Zhang X; Chen J; Lu C; Zhou P; Liu Q
    ACS Appl Mater Interfaces; 2019 May; 11(20):18654-18661. PubMed ID: 31038906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Artificial Synaptic Devices Based on Natural Chicken Albumen Coupled Electric-Double-Layer Transistors.
    Wu G; Feng P; Wan X; Zhu L; Shi Y; Wan Q
    Sci Rep; 2016 Mar; 6():23578. PubMed ID: 27008981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution of Bio-Inspired Artificial Synapses: Materials, Structures, and Mechanisms.
    Yu H; Wei H; Gong J; Han H; Ma M; Wang Y; Xu W
    Small; 2021 Mar; 17(9):e2000041. PubMed ID: 32452636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Natural Organic Materials Based Memristors and Transistors for Artificial Synaptic Devices in Sustainable Neuromorphic Computing Systems.
    Tanim MMH; Templin Z; Zhao F
    Micromachines (Basel); 2023 Jan; 14(2):. PubMed ID: 36837935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-Doping Memristors with Equivalently Synaptic Ion Dynamics for Neuromorphic Computing.
    Wang Y; Zhang Z; Xu M; Yang Y; Ma M; Li H; Pei J; Shi L
    ACS Appl Mater Interfaces; 2019 Jul; 11(27):24230-24240. PubMed ID: 31119929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stretchable and conformable synapse memristors for wearable and implantable electronics.
    Yang M; Zhao X; Tang Q; Cui N; Wang Z; Tong Y; Liu Y
    Nanoscale; 2018 Oct; 10(38):18135-18144. PubMed ID: 30152837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flexible Neuromorphic Electronics for Computing, Soft Robotics, and Neuroprosthetics.
    Park HL; Lee Y; Kim N; Seo DG; Go GT; Lee TW
    Adv Mater; 2020 Apr; 32(15):e1903558. PubMed ID: 31559670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Implementation of Highly Stable Memristive Characteristics in an Organic-Inorganic Hybrid Resistive Switching Layer of Chitosan-Titanium Oxide with Microwave-Assisted Oxidation.
    Lee DH; Park H; Cho WJ
    Molecules; 2023 Jul; 28(13):. PubMed ID: 37446836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electronic imitation of behavioral and psychological synaptic activities using TiO
    Banerjee W; Liu Q; Lv H; Long S; Liu M
    Nanoscale; 2017 Oct; 9(38):14442-14450. PubMed ID: 28926076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organic Memristor-Based Flexible Neural Networks with Bio-Realistic Synaptic Plasticity for Complex Combinatorial Optimization.
    Kim H; Kim M; Lee A; Park HL; Jang J; Bae JH; Kang IM; Kim ES; Lee SH
    Adv Sci (Weinh); 2023 Jul; 10(19):e2300659. PubMed ID: 37189211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.