These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 28837323)

  • 1. Tubular Monolayer Superlattices of Hollow Mn
    Li T; Xue B; Wang B; Guo G; Han D; Yan Y; Dong A
    J Am Chem Soc; 2017 Sep; 139(35):12133-12136. PubMed ID: 28837323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 2D FeP Nanoframe Superlattices via Space-Confined Topochemical Transformation.
    Deng Y; Xi X; Xia Y; Cao Y; Xue S; Wan S; Dong A; Yang D
    Adv Mater; 2022 Mar; 34(10):e2109145. PubMed ID: 34982834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Constructing functional mesostructured materials from colloidal nanocrystal building blocks.
    Milliron DJ; Buonsanti R; Llordes A; Helms BA
    Acc Chem Res; 2014 Jan; 47(1):236-46. PubMed ID: 24004254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced thermal stability and magnetic properties in NaCl-type FePt-MnO binary nanocrystal superlattices.
    Dong A; Chen J; Ye X; Kikkawa JM; Murray CB
    J Am Chem Soc; 2011 Aug; 133(34):13296-9. PubMed ID: 21800910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Colloidal Self-Assembly of Inorganic Nanocrystals into Superlattice Thin-Films and Multiscale Nanostructures.
    Yun H; Paik T
    Nanomaterials (Basel); 2019 Sep; 9(9):. PubMed ID: 31480547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A General Approach to Stabilize Nanocrystal Superlattices by Covalently Bonded Ligands.
    Wang S; Lu S; Tian X; Liu W; Si Y; Yang Y; Qiu H; Zhang H; Li J
    ACS Nano; 2023 Feb; 17(3):2792-2801. PubMed ID: 36651568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bistable magnetoresistance switching in exchange-coupled CoFe₂O₄--Fe₃O₄ binary nanocrystal superlattices by self-assembly and thermal annealing.
    Chen J; Ye X; Oh SJ; Kikkawa JM; Kagan CR; Murray CB
    ACS Nano; 2013 Feb; 7(2):1478-86. PubMed ID: 23273052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Setting Carriers Free: Healing Faulty Interfaces Promotes Delocalization and Transport in Nanocrystal Solids.
    Walravens W; Solano E; Geenen F; Dendooven J; Gorobtsov O; Tadjine A; Mahmoud N; Ding PP; Ruff JPC; Singer A; Roelkens G; Delerue C; Detavernier C; Hens Z
    ACS Nano; 2019 Nov; 13(11):12774-12786. PubMed ID: 31693334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Colloidal nanocrystals for electrochemical reduction reactions.
    Yiliguma ; Tang Y; Zheng G
    J Colloid Interface Sci; 2017 Jan; 485():308-327. PubMed ID: 27592729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of three-dimensionally interconnected nanoparticle superlattices and their lithium-ion storage properties.
    Jiao Y; Han D; Ding Y; Zhang X; Guo G; Hu J; Yang D; Dong A
    Nat Commun; 2015 Mar; 6():6420. PubMed ID: 25739732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing the relevance of building block crystallinity for tuning the stiffness of gold nanocrystal superlattices.
    Yan C; Portalès H; Goubet N; Arfaoui I; Sirotkin S; Mermet A; Pileni MP
    Nanoscale; 2013 Oct; 5(20):9523-7. PubMed ID: 24056754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of Pt-Pd binary superlattices exploiting shape effects and synergistic effects for oxygen reduction reactions.
    Kang Y; Ye X; Chen J; Cai Y; Diaz RE; Adzic RR; Stach EA; Murray CB
    J Am Chem Soc; 2013 Jan; 135(1):42-5. PubMed ID: 23214936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 2D Freestanding Janus Gold Nanocrystal Superlattices.
    Shi Q; Gómez DE; Dong D; Sikdar D; Fu R; Liu Y; Zhao Y; Smilgies DM; Cheng W
    Adv Mater; 2019 Jul; 31(28):e1900989. PubMed ID: 31070276
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hierarchical Materials Design by Pattern Transfer Printing of Self-Assembled Binary Nanocrystal Superlattices.
    Paik T; Yun H; Fleury B; Hong SH; Jo PS; Wu Y; Oh SJ; Cargnello M; Yang H; Murray CB; Kagan CR
    Nano Lett; 2017 Mar; 17(3):1387-1394. PubMed ID: 28146634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of monodisperse nanocrystals of manganese oxides.
    Yin M; O'Brien S
    J Am Chem Soc; 2003 Aug; 125(34):10180-1. PubMed ID: 12926934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy landscape of self-assembled superlattices of PbSe nanocrystals.
    Quan Z; Wu D; Zhu J; Evers WH; Boncella JM; Siebbeles LD; Wang Z; Navrotsky A; Xu H
    Proc Natl Acad Sci U S A; 2014 Jun; 111(25):9054-7. PubMed ID: 24927573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trimetallic PtCoFe Alloy Monolayer Superlattices as Bifunctional Oxygen-Reduction and Ethanol-Oxidation Electrocatalysts.
    Sial MAZG; Lin H; Zulfiqar M; Ullah S; Ni B; Wang X
    Small; 2017 Jun; 13(24):. PubMed ID: 28481478
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulating Multiple Variables To Understand the Nucleation and Growth and Transformation of PbS Nanocrystal Superlattices.
    Wang Z; Bian K; Nagaoka Y; Fan H; Cao YC
    J Am Chem Soc; 2017 Oct; 139(41):14476-14482. PubMed ID: 28953387
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Perovskite nanocrystal superlattices: self-assembly, collective behavior, and applications.
    Yan D; Shan Q; Dong Y; Han L; Wu X; Peng Y; Zeng H
    Chem Commun (Camb); 2023 May; 59(36):5365-5374. PubMed ID: 37070699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superlattice Engineering with Chemically Precise Molecular Building Blocks.
    Yan XY; Guo QY; Liu XY; Wang Y; Wang J; Su Z; Huang J; Bian F; Lin H; Huang M; Lin Z; Liu T; Liu Y; Cheng SZD
    J Am Chem Soc; 2021 Dec; 143(51):21613-21621. PubMed ID: 34913335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.