BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 28837386)

  • 1. Crosstalk between translation and the aggresome-autophagy pathway.
    Park Y; Park J; Kim YK
    Autophagy; 2018; 14(6):1079-1081. PubMed ID: 28837386
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Misfolded polypeptides are selectively recognized and transported toward aggresomes by a CED complex.
    Park J; Park Y; Ryu I; Choi MH; Lee HJ; Oh N; Kim K; Kim KM; Choe J; Lee C; Baik JH; Kim YK
    Nat Commun; 2017 Jun; 8():15730. PubMed ID: 28589942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TRIM28 functions as a negative regulator of aggresome formation.
    Chang J; Hwang HJ; Kim B; Choi YG; Park J; Park Y; Lee BS; Park H; Yoon MJ; Woo JS; Kim C; Park MS; Lee JB; Kim YK
    Autophagy; 2021 Dec; 17(12):4231-4248. PubMed ID: 33783327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonsense-mediated mRNA decay factor UPF1 promotes aggresome formation.
    Park Y; Park J; Hwang HJ; Kim B; Jeong K; Chang J; Lee JB; Kim YK
    Nat Commun; 2020 Jun; 11(1):3106. PubMed ID: 32561765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. YTHDF2 facilitates aggresome formation via UPF1 in an m
    Hwang HJ; Park TL; Kim HI; Park Y; Kim G; Song C; Cho WK; Kim YK
    Nat Commun; 2023 Oct; 14(1):6248. PubMed ID: 37803021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parkin-mediated K63-linked polyubiquitination: a signal for targeting misfolded proteins to the aggresome-autophagy pathway.
    Olzmann JA; Chin LS
    Autophagy; 2008 Jan; 4(1):85-7. PubMed ID: 17957134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aggresome formation and neurodegenerative diseases: therapeutic implications.
    Olzmann JA; Li L; Chin LS
    Curr Med Chem; 2008; 15(1):47-60. PubMed ID: 18220762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aggresomes protect cells by enhancing the degradation of toxic polyglutamine-containing protein.
    Taylor JP; Tanaka F; Robitschek J; Sandoval CM; Taye A; Markovic-Plese S; Fischbeck KH
    Hum Mol Genet; 2003 Apr; 12(7):749-57. PubMed ID: 12651870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hematopoietic stem cells preferentially traffic misfolded proteins to aggresomes and depend on aggrephagy to maintain protein homeostasis.
    Chua BA; Lennan CJ; Sunshine MJ; Dreifke D; Chawla A; Bennett EJ; Signer RAJ
    Cell Stem Cell; 2023 Apr; 30(4):460-472.e6. PubMed ID: 36948186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of SQSTM1 S403 phosphorylation facilitates the aggresome formation of ubiquitinated proteins during proteasome dysfunction.
    Zhang C; Duan Y; Huang C; Li L
    Cell Mol Biol Lett; 2023 Oct; 28(1):85. PubMed ID: 37872526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parkin-mediated ubiquitin signalling in aggresome formation and autophagy.
    Chin LS; Olzmann JA; Li L
    Biochem Soc Trans; 2010 Feb; 38(Pt 1):144-9. PubMed ID: 20074049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of the aggresome pathway in cancer: targeting histone deacetylase 6-dependent protein degradation.
    Rodriguez-Gonzalez A; Lin T; Ikeda AK; Simms-Waldrip T; Fu C; Sakamoto KM
    Cancer Res; 2008 Apr; 68(8):2557-60. PubMed ID: 18413721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteasomes activate aggresome disassembly and clearance by producing unanchored ubiquitin chains.
    Hao R; Nanduri P; Rao Y; Panichelli RS; Ito A; Yoshida M; Yao TP
    Mol Cell; 2013 Sep; 51(6):819-28. PubMed ID: 24035499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aggresome-like structure induced by isothiocyanates is novel proteasome-dependent degradation machinery.
    Mi L; Gan N; Chung FL
    Biochem Biophys Res Commun; 2009 Oct; 388(2):456-62. PubMed ID: 19682429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting bortezomib-induced aggresome formation using vinorelbine enhances the cytotoxic effect along with ER stress loading in breast cancer cell lines.
    Miyahara K; Kazama H; Kokuba H; Komatsu S; Hirota A; Takemura J; Hirasawa K; Moriya S; Abe A; Hiramoto M; Ishikawa T; Miyazawa K
    Int J Oncol; 2016 Nov; 49(5):1848-1858. PubMed ID: 27601063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clearance of misfolded and aggregated proteins by aggrephagy and implications for aggregation diseases.
    Hyttinen JM; Amadio M; Viiri J; Pascale A; Salminen A; Kaarniranta K
    Ageing Res Rev; 2014 Nov; 18():16-28. PubMed ID: 25062811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parkin Protects Against Misfolded SOD1 Toxicity by Promoting Its Aggresome Formation and Autophagic Clearance.
    Yung C; Sha D; Li L; Chin LS
    Mol Neurobiol; 2016 Nov; 53(9):6270-6287. PubMed ID: 26563499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long Term Aggresome Accumulation Leads to DNA Damage, p53-dependent Cell Cycle Arrest, and Steric Interference in Mitosis.
    Lu M; Boschetti C; Tunnacliffe A
    J Biol Chem; 2015 Nov; 290(46):27986-8000. PubMed ID: 26408200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glucose deprivation causes oxidative stress and stimulates aggresome formation and autophagy in cultured cardiac myocytes.
    Marambio P; Toro B; Sanhueza C; Troncoso R; Parra V; Verdejo H; García L; Quiroga C; Munafo D; Díaz-Elizondo J; Bravo R; González MJ; Diaz-Araya G; Pedrozo Z; Chiong M; Colombo MI; Lavandero S
    Biochim Biophys Acta; 2010 Jun; 1802(6):509-18. PubMed ID: 20176105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ALIS are stress-induced protein storage compartments for substrates of the proteasome and autophagy.
    Szeto J; Kaniuk NA; Canadien V; Nisman R; Mizushima N; Yoshimori T; Bazett-Jones DP; Brumell JH
    Autophagy; 2006; 2(3):189-99. PubMed ID: 16874109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.