BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 28837400)

  • 1. PKC SUMOylation inhibits the binding of 14-3-3τ to GluK2.
    Li X; Wang Y; Zhu A; Zhou J; Li Y
    Channels (Austin); 2017 Nov; 11(6):616-623. PubMed ID: 28837400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of GluK2a subunit-containing kainate receptors by 14-3-3 proteins.
    Sun C; Qiao H; Zhou Q; Wang Y; Wu Y; Zhou Y; Li Y
    J Biol Chem; 2013 Aug; 288(34):24676-90. PubMed ID: 23861400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Agonist-induced PKC phosphorylation regulates GluK2 SUMOylation and kainate receptor endocytosis.
    Konopacki FA; Jaafari N; Rocca DL; Wilkinson KA; Chamberlain S; Rubin P; Kantamneni S; Mellor JR; Henley JM
    Proc Natl Acad Sci U S A; 2011 Dec; 108(49):19772-7. PubMed ID: 22089239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SUMOylation and phosphorylation of GluK2 regulate kainate receptor trafficking and synaptic plasticity.
    Chamberlain SE; González-González IM; Wilkinson KA; Konopacki FA; Kantamneni S; Henley JM; Mellor JR
    Nat Neurosci; 2012 Jun; 15(6):845-52. PubMed ID: 22522402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kainate receptor post-translational modifications differentially regulate association with 4.1N to control activity-dependent receptor endocytosis.
    Copits BA; Swanson GT
    J Biol Chem; 2013 Mar; 288(13):8952-65. PubMed ID: 23400781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coordinated interplay between palmitoylation, phosphorylation and SUMOylation regulates kainate receptor surface expression.
    Yucel BP; Al Momany EM; Evans AJ; Seager R; Wilkinson KA; Henley JM
    Front Mol Neurosci; 2023; 16():1270849. PubMed ID: 37868810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SUMOylation of the kainate receptor subunit GluK2 contributes to the activation of the MLK3-JNK3 pathway following kainate stimulation.
    Zhu QJ; Xu Y; Du CP; Hou XY
    FEBS Lett; 2012 May; 586(9):1259-64. PubMed ID: 22483987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neto proteins regulate gating of the kainate-type glutamate receptor GluK2 through two binding sites.
    Li YJ; Duan GF; Sun JH; Wu D; Ye C; Zang YY; Chen GQ; Shi YY; Wang J; Zhang W; Shi YS
    J Biol Chem; 2019 Nov; 294(47):17889-17902. PubMed ID: 31628192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assembly and Trafficking of Homomeric and Heteromeric Kainate Receptors with Impaired Ligand Binding Sites.
    Scholefield CL; Atlason PT; Jane DE; Molnár E
    Neurochem Res; 2019 Mar; 44(3):585-599. PubMed ID: 30302614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of critical functional determinants of kainate receptor modulation by auxiliary protein Neto2.
    Griffith TN; Swanson GT
    J Physiol; 2015 Nov; 593(22):4815-33. PubMed ID: 26282342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modification and movement: Phosphorylation and SUMOylation regulate endocytosis of GluK2-containing kainate receptors.
    Wilkinson KA; Konopacki F; Henley JM
    Commun Integr Biol; 2012 Mar; 5(2):223-6. PubMed ID: 22808340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ADAR2-mediated Q/R editing of GluK2 regulates kainate receptor upscaling in response to suppression of synaptic activity.
    Gurung S; Evans AJ; Wilkinson KA; Henley JM
    J Cell Sci; 2018 Dec; 131(24):. PubMed ID: 30559217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Signal peptide represses GluK1 surface and synaptic trafficking through binding to amino-terminal domain.
    Duan GF; Ye Y; Xu S; Tao W; Zhao S; Jin T; Nicoll RA; Shi YS; Sheng N
    Nat Commun; 2018 Nov; 9(1):4879. PubMed ID: 30451858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tyrosine phosphorylation of GluK2 up-regulates kainate receptor-mediated responses and downstream signaling after brain ischemia.
    Zhu QJ; Kong FS; Xu H; Wang Y; Du CP; Sun CC; Liu Y; Li T; Hou XY
    Proc Natl Acad Sci U S A; 2014 Sep; 111(38):13990-5. PubMed ID: 25201974
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parkin regulates kainate receptors by interacting with the GluK2 subunit.
    Maraschi A; Ciammola A; Folci A; Sassone F; Ronzitti G; Cappelletti G; Silani V; Sato S; Hattori N; Mazzanti M; Chieregatti E; Mulle C; Passafaro M; Sassone J
    Nat Commun; 2014 Oct; 5():5182. PubMed ID: 25316086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of kainate receptor subunit ratios in mouse brain using novel chimeric protein standards.
    Watanabe-Iida I; Konno K; Akashi K; Abe M; Natsume R; Watanabe M; Sakimura K
    J Neurochem; 2016 Jan; 136(2):295-305. PubMed ID: 26448475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assembly and intracellular distribution of kainate receptors is determined by RNA editing and subunit composition.
    Ball SM; Atlason PT; Shittu-Balogun OO; Molnár E
    J Neurochem; 2010 Sep; 114(6):1805-18. PubMed ID: 20626562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential regulation of kainate receptor trafficking by phosphorylation of distinct sites on GluR6.
    Nasu-Nishimura Y; Jaffe H; Isaac JT; Roche KW
    J Biol Chem; 2010 Jan; 285(4):2847-56. PubMed ID: 19920140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Architecture and structural dynamics of the heteromeric GluK2/K5 kainate receptor.
    Khanra N; Brown PM; Perozzo AM; Bowie D; Meyerson JR
    Elife; 2021 Mar; 10():. PubMed ID: 33724189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein kinase C mu is negatively regulated by 14-3-3 signal transduction proteins.
    Hausser A; Storz P; Link G; Stoll H; Liu YC; Altman A; Pfizenmaier K; Johannes FJ
    J Biol Chem; 1999 Apr; 274(14):9258-64. PubMed ID: 10092600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.