BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 28837400)

  • 21. PKC-dependent autoregulation of membrane kainate receptors.
    Rivera R; Rozas JL; Lerma J
    EMBO J; 2007 Oct; 26(20):4359-67. PubMed ID: 17898803
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Amino-terminal domains of kainate receptors determine the differential dependence on Neto auxiliary subunits for trafficking.
    Sheng N; Shi YS; Nicoll RA
    Proc Natl Acad Sci U S A; 2017 Jan; 114(5):1159-1164. PubMed ID: 28100490
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synaptic Targeting of Kainate Receptors.
    Palacios-Filardo J; Aller MI; Lerma J
    Cereb Cortex; 2016 Apr; 26(4):1464-72. PubMed ID: 25316333
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Localization and function of pre- and postsynaptic kainate receptors in the rat globus pallidus.
    Jin XT; Paré JF; Raju DV; Smith Y
    Eur J Neurosci; 2006 Jan; 23(2):374-86. PubMed ID: 16420445
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Kainate receptor modulation by NETO2.
    He L; Sun J; Gao Y; Li B; Wang Y; Dong Y; An W; Li H; Yang B; Ge Y; Zhang XC; Shi YS; Zhao Y
    Nature; 2021 Nov; 599(7884):325-329. PubMed ID: 34552241
    [TBL] [Abstract][Full Text] [Related]  

  • 26. TCR-induced sumoylation of the kinase PKC-θ controls T cell synapse organization and T cell activation.
    Wang XD; Gong Y; Chen ZL; Gong BN; Xie JJ; Zhong CQ; Wang QL; Diao LH; Xu A; Han J; Altman A; Li Y
    Nat Immunol; 2015 Nov; 16(11):1195-203. PubMed ID: 26390157
    [TBL] [Abstract][Full Text] [Related]  

  • 27. mGlu5 receptors regulate synaptic sumoylation via a transient PKC-dependent diffusional trapping of Ubc9 into spines.
    Loriol C; Cassé F; Khayachi A; Poupon G; Chafai M; Deval E; Gwizdek C; Martin S
    Nat Commun; 2014 Oct; 5():5113. PubMed ID: 25311713
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Kainate receptor activation induces glycine receptor endocytosis through PKC deSUMOylation.
    Sun H; Lu L; Zuo Y; Wang Y; Jiao Y; Zeng WZ; Huang C; Zhu MX; Zamponi GW; Zhou T; Xu TL; Cheng J; Li Y
    Nat Commun; 2014 Sep; 5():4980. PubMed ID: 25236484
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Profilin II regulates the exocytosis of kainate glutamate receptors.
    Mondin M; Carta M; Normand E; Mulle C; Coussen F
    J Biol Chem; 2010 Dec; 285(51):40060-71. PubMed ID: 20937818
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular determinants for the strictly compartmentalized expression of kainate receptors in CA3 pyramidal cells.
    Fièvre S; Carta M; Chamma I; Labrousse V; Thoumine O; Mulle C
    Nat Commun; 2016 Sep; 7():12738. PubMed ID: 27669960
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pharmacological Modulation of GluK1 and GluK2 by NETO1, NETO2, and PSD95.
    Li B; Rex E; Wang H; Qian Y; Ogden AM; Bleakman D; Johnson KW
    Assay Drug Dev Technol; 2016 Mar; 14(2):131-43. PubMed ID: 26991362
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification and Structure-Function Study of Positive Allosteric Modulators of Kainate Receptors.
    Larsen AP; Fièvre S; Frydenvang K; Francotte P; Pirotte B; Kastrup JS; Mulle C
    Mol Pharmacol; 2017 Jun; 91(6):576-585. PubMed ID: 28360094
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Positive and negative allosteric modulation of GluK2 kainate receptors by BPAM344 and antiepileptic perampanel.
    Gangwar SP; Yen LY; Yelshanskaya MV; Sobolevsky AI
    Cell Rep; 2023 Feb; 42(2):112124. PubMed ID: 36857176
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Down-regulation of GluK2 kainate receptor expression by chronic treatment with mood-stabilizing anti-convulsants or lithium in cultured astrocytes and brain, but not in neurons.
    Li B; Zhang S; Li M; Zhang H; Hertz L; Peng L
    Neuropharmacology; 2009 Sep; 57(4):375-85. PubMed ID: 19596362
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Kainate receptor-mediated synaptic transmissions in the adult rodent insular cortex.
    Koga K; Sim SE; Chen T; Wu LJ; Kaang BK; Zhuo M
    J Neurophysiol; 2012 Oct; 108(7):1988-98. PubMed ID: 22786952
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Seizure protein 6 controls glycosylation and trafficking of kainate receptor subunits GluK2 and GluK3.
    Pigoni M; Hsia HE; Hartmann J; Rudan Njavro J; Shmueli MD; Müller SA; Güner G; Tüshaus J; Kuhn PH; Kumar R; Gao P; Tran ML; Ramazanov B; Blank B; Hipgrave Ederveen AL; Von Blume J; Mulle C; Gunnersen JM; Wuhrer M; Rammes G; Busche MA; Koeglsperger T; Lichtenthaler SF
    EMBO J; 2020 Aug; 39(15):e103457. PubMed ID: 32567721
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Channel-opening kinetic mechanism for human wild-type GluK2 and the M867I mutant kainate receptor.
    Han Y; Wang C; Park JS; Niu L
    Biochemistry; 2010 Nov; 49(43):9207-16. PubMed ID: 20863077
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The auxiliary subunits Neto1 and Neto2 have distinct, subunit-dependent effects at recombinant GluK1- and GluK2-containing kainate receptors.
    Fisher JL
    Neuropharmacology; 2015 Dec; 99():471-80. PubMed ID: 26277340
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Zinc potentiates GluK3 glutamate receptor function by stabilizing the ligand binding domain dimer interface.
    Veran J; Kumar J; Pinheiro PS; Athané A; Mayer ML; Perrais D; Mulle C
    Neuron; 2012 Nov; 76(3):565-78. PubMed ID: 23141068
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Contribution of aberrant GluK2-containing kainate receptors to chronic seizures in temporal lobe epilepsy.
    Peret A; Christie LA; Ouedraogo DW; Gorlewicz A; Epsztein J; Mulle C; Crépel V
    Cell Rep; 2014 Jul; 8(2):347-54. PubMed ID: 25043179
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.