These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 28837603)

  • 1. Proteomic analysis of protein phosphatase Z1 from Candida albicans.
    Márkus B; Szabó K; Pfliegler WP; Petrényi K; Boros E; Pócsi I; Tőzsér J; Csősz É; Dombrádi V
    PLoS One; 2017; 12(8):e0183176. PubMed ID: 28837603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deletion of the fungus specific protein phosphatase Z1 exaggerates the oxidative stress response in Candida albicans.
    Szabó K; Jakab Á; Póliska S; Petrényi K; Kovács K; Issa LHB; Emri T; Pócsi I; Dombrádi V
    BMC Genomics; 2019 Nov; 20(1):873. PubMed ID: 31744473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein phosphatase CaPpz1 is involved in cation homeostasis, cell wall integrity and virulence of Candida albicans.
    Ádám C; Erdei É; Casado C; Kovács L; González A; Majoros L; Petrényi K; Bagossi P; Farkas I; Molnar M; Pócsi I; Ariño J; Dombrádi V
    Microbiology (Reading); 2012 May; 158(Pt 5):1258-1267. PubMed ID: 22343349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissection of the regulatory role for the N-terminal domain in Candida albicans protein phosphatase Z1.
    Szabó K; Kónya Z; Erdődi F; Farkas I; Dombrádi V
    PLoS One; 2019; 14(2):e0211426. PubMed ID: 30707732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The polymorphism of protein phosphatase Z1 gene in Candida albicans.
    Kovács L; Farkas I; Majoros L; Miskei M; Pócsi I; Dombrádi V
    J Basic Microbiol; 2010 Dec; 50 Suppl 1():S74-82. PubMed ID: 20473966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of Two Putative Candida albicans Phosphopantothenoylcysteine Decarboxylase / Protein Phosphatase Z Regulatory Subunits Reveals an Unexpected Distribution of Functional Roles.
    Petrényi K; Molero C; Kónya Z; Erdődi F; Ariño J; Dombrádi V
    PLoS One; 2016; 11(8):e0160965. PubMed ID: 27504636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of the Candida albicans Phosphoproteome.
    Willger SD; Liu Z; Olarte RA; Adamo ME; Stajich JE; Myers LC; Kettenbach AN; Hogan DA
    Eukaryot Cell; 2015 May; 14(5):474-85. PubMed ID: 25750214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative Proteomic Analysis in Candida albicans Using SILAC-Based Mass Spectrometry.
    Kaneva IN; Longworth J; Sudbery PE; Dickman MJ
    Proteomics; 2018 Mar; 18(5-6):e1700278. PubMed ID: 29280593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular Insights into the Fungus-Specific Serine/Threonine Protein Phosphatase Z1 in Candida albicans.
    Chen E; Choy MS; Petrényi K; Kónya Z; Erdődi F; Dombrádi V; Peti W; Page R
    mBio; 2016 Aug; 7(4):. PubMed ID: 27578752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteomics for the analysis of the Candida albicans biofilm lifestyle.
    Thomas DP; Bachmann SP; Lopez-Ribot JL
    Proteomics; 2006 Nov; 6(21):5795-804. PubMed ID: 17001605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative proteomic analysis of a Candida albicans DSE1 mutant under filamentous and non-filamentous conditions.
    Zohbi R; Wex B; Khalaf RA
    Yeast; 2014 Nov; 31(11):441-8. PubMed ID: 25231799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteomics unravels extracellular vesicles as carriers of classical cytoplasmic proteins in Candida albicans.
    Gil-Bona A; Llama-Palacios A; Parra CM; Vivanco F; Nombela C; Monteoliva L; Gil C
    J Proteome Res; 2015 Jan; 14(1):142-53. PubMed ID: 25367658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A serine/threonine protein phosphatase-like protein, CaPTC8, from Candida albicans defines a new PPM subfamily.
    Fan J; Wu M; Jiang L; Shen SH
    Gene; 2009 Feb; 430(1-2):64-76. PubMed ID: 19049858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reg1p targets protein phosphatase 1 to dephosphorylate hexokinase II in Saccharomyces cerevisiae: characterizing the effects of a phosphatase subunit on the yeast proteome.
    Alms GR; Sanz P; Carlson M; Haystead TA
    EMBO J; 1999 Aug; 18(15):4157-68. PubMed ID: 10428955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tear lipocalin is the predominant phosphoprotein in human tear fluid.
    Zhao Z; Liu J; Wasinger VC; Malouf T; Nguyen-Khuong T; Walsh B; Willcox MD
    Exp Eye Res; 2010 Feb; 90(2):344-9. PubMed ID: 19951704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomic profile of Candida albicans biofilm.
    Abdulghani M; Iram R; Chidrawar P; Bhosle K; Kazi R; Patil R; Kharat K; Zore G
    J Proteomics; 2022 Aug; 265():104661. PubMed ID: 35728770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tandem Mass Spectrometric Cell Wall Proteome Profiling of a Candida albicans hwp2 Mutant Strain.
    Awad A; El Khoury P; Wex B; Khalaf RA
    Curr Mol Pharmacol; 2018; 11(3):211-225. PubMed ID: 29741145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A mitochondrial proteomics view of complex I deficiency in Candida albicans.
    She X; Zhang P; Gao Y; Zhang L; Wang Q; Chen H; Calderone R; Liu W; Li D
    Mitochondrion; 2018 Jan; 38():48-57. PubMed ID: 28801230
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Null mutants of Candida albicans for cell-wall-related genes form fragile biofilms that display an almost identical extracellular matrix proteome.
    Martínez JP; Blanes R; Casanova M; Valentín E; Murgui A; Domínguez Á
    FEMS Yeast Res; 2016 Nov; 16(7):. PubMed ID: 27609602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteomic analysis of the oxidative stress response in Candida albicans.
    Kusch H; Engelmann S; Albrecht D; Morschhäuser J; Hecker M
    Proteomics; 2007 Mar; 7(5):686-97. PubMed ID: 17285563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.