These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 28837704)
1. Long-term spatial distributions and trends of the latent heat fluxes over the global cropland ecosystem using multiple satellite-based models. Feng F; Li X; Yao Y; Liu M PLoS One; 2017; 12(8):e0183771. PubMed ID: 28837704 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of three satellite-based latent heat flux algorithms over forest ecosystems using eddy covariance data. Yao Y; Zhang Y; Zhao S; Li X; Jia K Environ Monit Assess; 2015 Jun; 187(6):382. PubMed ID: 26017809 [TBL] [Abstract][Full Text] [Related]
3. An Empirical Orthogonal Function-Based Algorithm for Estimating Terrestrial Latent Heat Flux from Eddy Covariance, Meteorological and Satellite Observations. Feng F; Li X; Yao Y; Liang S; Chen J; Zhao X; Jia K; Pintér K; McCaughey JH PLoS One; 2016; 11(7):e0160150. PubMed ID: 27472383 [TBL] [Abstract][Full Text] [Related]
4. A machine learning approach to estimation of downward solar radiation from satellite-derived data products: An application over a semi-arid ecosystem in the U.S. Zhou Q; Flores A; Glenn NF; Walters R; Han B PLoS One; 2017; 12(8):e0180239. PubMed ID: 28777811 [TBL] [Abstract][Full Text] [Related]
5. Improving the spatial and temporal estimation of ecosystem respiration using multi-source data and machine learning methods in a rainfed winter wheat cropland. Lu R; Zhang P; Fu Z; Jiang J; Wu J; Cao Q; Tian Y; Zhu Y; Cao W; Liu X Sci Total Environ; 2023 May; 871():161967. PubMed ID: 36737023 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of a satellite-derived model parameterized by three soil moisture constraints to estimate terrestrial latent heat flux in the Heihe River basin of Northwest China. Yao Y; Zhang Y; Liu Q; Liu S; Jia K; Zhang X; Xu Z; Xu T; Chen J; Fisher JB Sci Total Environ; 2019 Dec; 695():133787. PubMed ID: 31756871 [TBL] [Abstract][Full Text] [Related]
7. Estimation of Daily Terrestrial Latent Heat Flux with High Spatial Resolution from MODIS and Chinese GF-1 Data. Bei X; Yao Y; Zhang L; Lin Y; Liu S; Jia K; Zhang X; Shang K; Yang J; Chen X; Guo X Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32429110 [TBL] [Abstract][Full Text] [Related]
8. A remote sensing-based three-source energy balance model to improve global estimations of evapotranspiration in semi-arid tree-grass ecosystems. Burchard-Levine V; Nieto H; Riaño D; Kustas WP; Migliavacca M; El-Madany TS; Nelson JA; Andreu A; Carrara A; Beringer J; Baldocchi D; Martín MP Glob Chang Biol; 2022 Feb; 28(4):1493-1515. PubMed ID: 34799950 [TBL] [Abstract][Full Text] [Related]
9. Methodological comparison of alpine meadow evapotranspiration on the Tibetan Plateau, China. Chang Y; Wang J; Qin D; Ding Y; Zhao Q; Liu F; Zhang S PLoS One; 2017; 12(12):e0189059. PubMed ID: 29236754 [TBL] [Abstract][Full Text] [Related]
10. Variations in seasonal and inter-annual carbon fluxes in a semi-arid sandy maize cropland ecosystem in China's Horqin Sandy Land. Niu Y; Li Y; Wang M; Wang X; Chen Y; Duan Y Environ Sci Pollut Res Int; 2022 Jan; 29(4):5295-5312. PubMed ID: 34420164 [TBL] [Abstract][Full Text] [Related]
11. Spatial heterogeneity of changes in cropland ecosystem water use efficiency and responses to drought in China. Zhao A; Yu Q; Cheng D; Zhang A Environ Sci Pollut Res Int; 2022 Feb; 29(10):14806-14818. PubMed ID: 34622399 [TBL] [Abstract][Full Text] [Related]
12. Latent heat exchange in the boreal and arctic biomes. Kasurinen V; Alfredsen K; Kolari P; Mammarella I; Alekseychik P; Rinne J; Vesala T; Bernier P; Boike J; Langer M; Belelli Marchesini L; van Huissteden K; Dolman H; Sachs T; Ohta T; Varlagin A; Rocha A; Arain A; Oechel W; Lund M; Grelle A; Lindroth A; Black A; Aurela M; Laurila T; Lohila A; Berninger F Glob Chang Biol; 2014 Nov; 20(11):3439-56. PubMed ID: 24889888 [TBL] [Abstract][Full Text] [Related]
13. Cropland carbon fluxes in the United States: increasing geospatial resolution of inventory-based carbon accounting. West TO; Brandt CC; Baskaran LM; Hellwinckel CM; Mueller R; Bernacchi CJ; Bandaru V; Yang B; Wilson BS; Marland G; Nelson RG; De la Torre Ugarte DG; Post WM Ecol Appl; 2010 Jun; 20(4):1074-86. PubMed ID: 20597291 [TBL] [Abstract][Full Text] [Related]
14. Penman-Monteith approaches for estimating crop evapotranspiration in screenhouses--a case study with table-grape. Pirkner M; Dicken U; Tanny J Int J Biometeorol; 2014 Jul; 58(5):725-37. PubMed ID: 23572271 [TBL] [Abstract][Full Text] [Related]
15. Estimating Vegetation Primary Production in the Heihe River Basin of China with Multi-Source and Multi-Scale Data. Cui T; Wang Y; Sun R; Qiao C; Fan W; Jiang G; Hao L; Zhang L PLoS One; 2016; 11(4):e0153971. PubMed ID: 27088356 [TBL] [Abstract][Full Text] [Related]
16. A high-resolution approach to estimating ecosystem respiration at continental scales using operational satellite data. Jägermeyr J; Gerten D; Lucht W; Hostert P; Migliavacca M; Nemani R Glob Chang Biol; 2014 Apr; 20(4):1191-210. PubMed ID: 24259306 [TBL] [Abstract][Full Text] [Related]
17. Crop evapotranspiration-based irrigation management during the growing season in the arid region of northwestern China. Chang X; Zhao W; Zeng F Environ Monit Assess; 2015 Nov; 187(11):699. PubMed ID: 26497559 [TBL] [Abstract][Full Text] [Related]
18. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States. Paciorek CJ; Liu Y; Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153 [TBL] [Abstract][Full Text] [Related]
19. Unveiling Undercover Cropland Inside Forests Using Landscape Variables: A Supplement to Remote Sensing Image Classification. Ayanu Y; Conrad C; Jentsch A; Koellner T PLoS One; 2015; 10(6):e0130079. PubMed ID: 26098107 [TBL] [Abstract][Full Text] [Related]
20. High-resolution crop yield and water productivity dataset generated using random forest and remote sensing. Cheng M; Jiao X; Shi L; Penuelas J; Kumar L; Nie C; Wu T; Liu K; Wu W; Jin X Sci Data; 2022 Oct; 9(1):641. PubMed ID: 36271097 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]