These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 28837719)

  • 1. Modeling the Pathophysiology of Phonotraumatic Vocal Hyperfunction With a Triangular Glottal Model of the Vocal Folds.
    Galindo GE; Peterson SD; Erath BD; Castro C; Hillman RE; Zañartu M
    J Speech Lang Hear Res; 2017 Sep; 60(9):2452-2471. PubMed ID: 28837719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling the effects of a posterior glottal opening on vocal fold dynamics with implications for vocal hyperfunction.
    Zañartu M; Galindo GE; Erath BD; Peterson SD; Wodicka GR; Hillman RE
    J Acoust Soc Am; 2014 Dec; 136(6):3262. PubMed ID: 25480072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glottal Aerodynamic Measures in Women With Phonotraumatic and Nonphonotraumatic Vocal Hyperfunction.
    Espinoza VM; Zañartu M; Van Stan JH; Mehta DD; Hillman RE
    J Speech Lang Hear Res; 2017 Aug; 60(8):2159-2169. PubMed ID: 28785762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of a semioccluded vocal tract on laryngeal muscle activity and glottal adduction in a single female subject.
    Laukkanen AM; Titze IR; Hoffman H; Finnegan E
    Folia Phoniatr Logop; 2008; 60(6):298-311. PubMed ID: 19011306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Triangular body-cover model of the vocal folds with coordinated activation of the five intrinsic laryngeal muscles.
    Alzamendi GA; Peterson SD; Erath BD; Hillman RE; Zañartu M
    J Acoust Soc Am; 2022 Jan; 151(1):17. PubMed ID: 35105008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of glottal closure and airflow in a three-dimensional phonation model: implications for vocal intensity control.
    Zhang Z
    J Acoust Soc Am; 2015 Feb; 137(2):898-910. PubMed ID: 25698022
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Euler-Bernoulli-type beam model of the vocal folds for describing curved and incomplete glottal closure patterns.
    Serry MA; Alzamendi GA; Zañartu M; Peterson SD
    J Mech Behav Biomed Mater; 2023 Nov; 147():106130. PubMed ID: 37774440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling the biomechanical influence of epilaryngeal stricture on the vocal folds: a low-dimensional model of vocal-ventricular fold coupling.
    Moisik SR; Esling JH
    J Speech Lang Hear Res; 2014 Apr; 57(2):S687-704. PubMed ID: 24687007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of size and etiology of glottal gap in glottic incompetence dysphonia.
    Omori K; Slavit DH; Kacker A; Blaugrund SM
    Laryngoscope; 1998 Apr; 108(4 Pt 1):514-8. PubMed ID: 9546262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Muscle tension dysphonia as a sign of underlying glottal insufficiency.
    Belafsky PC; Postma GN; Reulbach TR; Holland BW; Koufman JA
    Otolaryngol Head Neck Surg; 2002 Nov; 127(5):448-51. PubMed ID: 12447240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of vocal fold asymmetries on glottal flow.
    Oren L; Khosla S; Gutmark E
    Laryngoscope; 2016 Nov; 126(11):2534-2538. PubMed ID: 26972976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glottal Aerodynamics Estimated From Neck-Surface Vibration in Women With Phonotraumatic and Nonphonotraumatic Vocal Hyperfunction.
    Espinoza VM; Mehta DD; Van Stan JH; Hillman RE; Zañartu M
    J Speech Lang Hear Res; 2020 Sep; 63(9):2861-2869. PubMed ID: 32755502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vocal Fold Collision Speed in vivo: The Effect of Loudness.
    DeJonckere PH; Lebacq J
    J Voice; 2022 Sep; 36(5):608-621. PubMed ID: 33004227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ambulatory assessment of phonotraumatic vocal hyperfunction using glottal airflow measures estimated from neck-surface acceleration.
    Cortés JP; Espinoza VM; Ghassemi M; Mehta DD; Van Stan JH; Hillman RE; Guttag JV; Zañartu M
    PLoS One; 2018; 13(12):e0209017. PubMed ID: 30571719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vocal fold abnormalities in laryngeal tension-fatigue syndrome.
    Hsiao TY; Liu CM; Hsu CJ; Lee SY; Lin KN
    J Formos Med Assoc; 2001 Dec; 100(12):837-40. PubMed ID: 11802526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Supraglottal Acoustics on Fluid-Structure Interaction During Human Voice Production.
    Bodaghi D; Jiang W; Xue Q; Zheng X
    J Biomech Eng; 2021 Apr; 143(4):. PubMed ID: 33399816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differences in Weeklong Ambulatory Vocal Behavior Between Female Patients With Phonotraumatic Lesions and Matched Controls.
    Van Stan JH; Mehta DD; Ortiz AJ; Burns JA; Toles LE; Marks KL; Vangel M; Hron T; Zeitels S; Hillman RE
    J Speech Lang Hear Res; 2020 Feb; 63(2):372-384. PubMed ID: 31995428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adduction arytenopexy: a new procedure for paralytic dysphonia with implications for implant medialization.
    Zeitels SM; Hochman I; Hillman RE
    Ann Otol Rhinol Laryngol Suppl; 1998 Sep; 173():2-24. PubMed ID: 9750545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Objective assessment of vocal hyperfunction: an experimental framework and initial results.
    Hillman RE; Holmberg EB; Perkell JS; Walsh M; Vaughan C
    J Speech Hear Res; 1989 Jun; 32(2):373-92. PubMed ID: 2739390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. What can vortices tell us about vocal fold vibration and voice production.
    Khosla S; Murugappan S; Gutmark E
    Curr Opin Otolaryngol Head Neck Surg; 2008 Jun; 16(3):183-7. PubMed ID: 18475068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.