These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 28837719)

  • 21. Comparison of electroglottographic variability index in euphonic and pathological voice.
    Nacci A; Romeo SO; Cavaliere MD; Macerata A; Bastiani L; Paludetti G; Galli J; Marchese MR; Barillari MR; Barillari U; Berrettini S; Laschi C; Cianchetti M; Manti M; Ursino F; Fattori B
    Acta Otorhinolaryngol Ital; 2019 Dec; 39(6):381-388. PubMed ID: 30745592
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analysis and Classification of Voice Pathologies Using Glottal Signal Parameters.
    Forero M LA; Kohler M; Vellasco MM; Cataldo E
    J Voice; 2016 Sep; 30(5):549-56. PubMed ID: 26474715
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Glottal configuration, acoustic, and aerodynamic changes induced by variation in suture direction in arytenoid adduction procedures.
    Inagi K; Connor NP; Suzuki T; Ford CN; Bless DM; Nakajima M
    Ann Otol Rhinol Laryngol; 2002 Oct; 111(10):861-70. PubMed ID: 12389852
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Neuromuscular compensation mechanisms in vocal fold paralysis and paresis.
    Dewan K; Vahabzadeh-Hagh A; Soofer D; Chhetri DK
    Laryngoscope; 2017 Jul; 127(7):1633-1638. PubMed ID: 28059441
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Compensation Strategies in Voice Production With Glottal Insufficiency.
    Zhang Z
    J Voice; 2019 Jan; 33(1):96-102. PubMed ID: 29129663
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The influence of source-filter interaction on the voice source in a three-dimensional computational model of voice production.
    Zhang Z
    J Acoust Soc Am; 2023 Oct; 154(4):2462-2475. PubMed ID: 37855666
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Glottographic signal perturbation in biomechanically different types of dysphonia.
    Lin E; Jiang J; Hanson DG
    Laryngoscope; 1998 Jan; 108(1 Pt 1):18-25. PubMed ID: 9432061
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Vocal fold atrophy: quantitative glottic measurement and vocal function.
    Omori K; Slavit DH; Matos C; Kojima H; Kacker A; Blaugrund SM
    Ann Otol Rhinol Laryngol; 1997 Jul; 106(7 Pt 1):544-51. PubMed ID: 9228852
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lombard Effect in Individuals With Nonphonotraumatic Vocal Hyperfunction: Impact on Acoustic, Aerodynamic, and Vocal Fold Vibratory Parameters.
    Castro C; Prado P; Espinoza VM; Testart A; Marfull D; Manriquez R; Stepp CE; Mehta DD; Hillman RE; Zañartu M
    J Speech Lang Hear Res; 2022 Aug; 65(8):2881-2895. PubMed ID: 35930680
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Estimation of impact stress using an aeroelastic model of voice production.
    Horácek J; Laukkanen AM; Sidlof P
    Logoped Phoniatr Vocol; 2007; 32(4):185-92. PubMed ID: 17990190
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of thyroplasty type I on vocal fold vibration.
    Omori K; Slavit DH; Kacker A; Blaugrund SM; Kojima H
    Laryngoscope; 2000 Jul; 110(7):1086-91. PubMed ID: 10892675
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Glottal Adduction and Subglottal Pressure in Singing.
    Herbst CT; Hess M; Müller F; Švec JG; Sundberg J
    J Voice; 2015 Jul; 29(4):391-402. PubMed ID: 25944295
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The frequency of hard glottal attacks in patients with muscle tension dysphonia, unilateral benign masses and bilateral benign masses.
    Andrade DF; Heuer R; Hockstein NE; Castro E; Spiegel JR; Sataloff RT
    J Voice; 2000 Jun; 14(2):240-6. PubMed ID: 10875576
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Estimation of Subglottal Pressure, Vocal Fold Collision Pressure, and Intrinsic Laryngeal Muscle Activation From Neck-Surface Vibration Using a Neural Network Framework and a Voice Production Model.
    Ibarra EJ; Parra JA; Alzamendi GA; Cortés JP; Espinoza VM; Mehta DD; Hillman RE; Zañartu M
    Front Physiol; 2021; 12():732244. PubMed ID: 34539451
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optimized transformation of the glottal motion into a mechanical model.
    Triep M; Brücker C; Stingl M; Döllinger M
    Med Eng Phys; 2011 Mar; 33(2):210-7. PubMed ID: 21115384
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Glottal and supraglottal configuration during whispering].
    Fleischer S; Kothe C; Hess M
    Laryngorhinootologie; 2007 Apr; 86(4):271-5. PubMed ID: 17219333
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A biomechanical laryngeal model of voice F0 and glottal width control.
    Farley GR
    J Acoust Soc Am; 1996 Dec; 100(6):3794-812. PubMed ID: 8969481
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Collision Pressure and Dissipated Power Dose in a Self-Oscillating Silicone Vocal Fold Model With a Posterior Glottal Opening.
    Motie-Shirazi M; Zañartu M; Peterson SD; Mehta DD; Hillman RE; Erath BD
    J Speech Lang Hear Res; 2022 Aug; 65(8):2829-2845. PubMed ID: 35914018
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Acoustic impact of the gradual glottal abduction degree on the production of fricatives: A numerical study.
    Elie B; Laprie Y
    J Acoust Soc Am; 2017 Sep; 142(3):1303. PubMed ID: 28964087
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Voice production model integrating boundary-layer analysis of glottal flow and source-filter coupling.
    Kaburagi T
    J Acoust Soc Am; 2011 Mar; 129(3):1554-67. PubMed ID: 21428519
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.