BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 28837792)

  • 1. Lipids of Dietzia sp. A14101. Part II: A study of the dynamics of the release of surface active compounds by Dietzia sp. A14101 into the medium.
    Hvidsten I; Mjøs SA; Bødtker G; Barth T
    Chem Phys Lipids; 2017 Nov; 208():31-42. PubMed ID: 28837792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lipids of Dietzia sp. A14101. Part I: A study of the production dynamics of surface-active compounds.
    Hvidsten I; Mjøs SA; Holmelid B; Bødtker G; Barth T
    Chem Phys Lipids; 2017 Nov; 208():19-30. PubMed ID: 28855095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fatty acids in bacterium Dietzia sp. grown on simple and complex hydrocarbons determined as FAME by GC-MS.
    Hvidsten I; Mjøs SA; Bødtker G; Barth T
    Chem Phys Lipids; 2015 Sep; 190():15-26. PubMed ID: 26120076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrocarbon degradation by Dietzia sp. A14101 isolated from an oil reservoir model column.
    Bødtker G; Hvidsten IV; Barth T; Torsvik T
    Antonie Van Leeuwenhoek; 2009 Nov; 96(4):459-69. PubMed ID: 19565350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wax ester-like compounds as biosurfactants produced by Dietzia maris from n-alkane as a sole carbon source.
    Nakano M; Kihara M; Iehata S; Tanaka R; Maeda H; Yoshikawa T
    J Basic Microbiol; 2011 Oct; 51(5):490-8. PubMed ID: 21656811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of crude oil degradation by Dietzia cinnamea KA1, capable of biosurfactant production.
    Kavynifard A; Ebrahimipour G; Ghasempour A
    J Basic Microbiol; 2016 May; 56(5):566-75. PubMed ID: 26615815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Data on pigments and long-chain fatty compounds identified in Dietzia sp. A14101 grown on simple and complex hydrocarbons.
    Hvidsten I; Mjøs SA; Bødtker G; Barth T
    Data Brief; 2015 Sep; 4():622-9. PubMed ID: 26442286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of Enterobacter cloacae BAGM01 Producing a Thermostable and Alkaline-Tolerant Rhamnolipid Biosurfactant from the Gulf of Mexico.
    Curiel-Maciel NF; Martínez-Morales F; Licea-Navarro AF; Bertrand B; Aguilar-Guadarrama AB; Rosas-Galván NS; Morales-Guzmán D; Rivera-Gómez N; Gutiérrez-Ríos RM; Trejo-Hernández MR
    Mar Biotechnol (NY); 2021 Feb; 23(1):106-126. PubMed ID: 33215353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and characterization of a biosurfactant-producing Fusarium sp. BS-8 from oil contaminated soil.
    Qazi MA; Kanwal T; Jadoon M; Ahmed S; Fatima N
    Biotechnol Prog; 2014; 30(5):1065-75. PubMed ID: 24850435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production and characterisation of glycolipid biosurfactant by Halomonas sp. MB-30 for potential application in enhanced oil recovery.
    Dhasayan A; Kiran GS; Selvin J
    Appl Biochem Biotechnol; 2014 Dec; 174(7):2571-84. PubMed ID: 25326183
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An oil-degrading bacterium: Rhodococcus erythropolis strain 3C-9 and its biosurfactants.
    Peng F; Liu Z; Wang L; Shao Z
    J Appl Microbiol; 2007 Jun; 102(6):1603-11. PubMed ID: 17578426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal Structure of TetR Family Repressor AlkX from Dietzia sp. Strain DQ12-45-1b Implicated in Biodegradation of
    Liang JL; Gao Y; He Z; Nie Y; Wang M; JiangYang JH; Zhang XC; Shu WS; Wu XL
    Appl Environ Microbiol; 2017 Nov; 83(21):. PubMed ID: 28821550
    [No Abstract]   [Full Text] [Related]  

  • 13. n-Alkane chain length alters Dietzia sp. strain DQ12-45-1b biosurfactant production and cell surface activity.
    Wang XB; Nie Y; Tang YQ; Wu G; Wu XL
    Appl Environ Microbiol; 2013 Jan; 79(1):400-2. PubMed ID: 23104403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic Exchange with Non-Alkane-Consuming Pseudomonas stutzeri SLG510A3-8 Improves
    Hu B; Wang M; Geng S; Wen L; Wu M; Nie Y; Tang YQ; Wu XL
    Appl Environ Microbiol; 2020 Apr; 86(8):. PubMed ID: 32033953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emulsification potential of a newly isolated biosurfactant-producing bacterium, Rhodococcus sp. strain TA6.
    Shavandi M; Mohebali G; Haddadi A; Shakarami H; Nuhi A
    Colloids Surf B Biointerfaces; 2011 Feb; 82(2):477-82. PubMed ID: 21030223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biosurfactant production by a CO2 sequestering Bacillus sp. strain ISTS2.
    Sundaram S; Thakur IS
    Bioresour Technol; 2015; 188():247-50. PubMed ID: 25641713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preliminary characterization of biosurfactants produced by microorganisms isolated from refinery wastewaters.
    Yalçin E; Ergene A
    Environ Technol; 2010 Feb; 31(2):225-32. PubMed ID: 20391807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sustainable trehalose lipid production by Rhodotorula sp.: a promising bio-based alternative.
    Lopes S; Fahr E; Costa J; Silva AB; Lopes MM; Faustino C; Ribeiro MHL
    Bioprocess Biosyst Eng; 2024 Jan; 47(1):145-157. PubMed ID: 38103079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization and characterization of a glycolipid produced by Achromobacter sp. to use in petroleum industries.
    Haloi S; Medhi T
    J Basic Microbiol; 2019 Mar; 59(3):238-248. PubMed ID: 30600533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.