These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 28837816)

  • 41. Marginal Space Deep Learning: Efficient Architecture for Volumetric Image Parsing.
    Ghesu FC; Krubasik E; Georgescu B; Singh V; Yefeng Zheng ; Hornegger J; Comaniciu D
    IEEE Trans Med Imaging; 2016 May; 35(5):1217-1228. PubMed ID: 27046846
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A Dirichlet process mixture model for automatic (18)F-FDG PET image segmentation: Validation study on phantoms and on lung and esophageal lesions.
    Giri MG; Cavedon C; Mazzarotto R; Ferdeghini M
    Med Phys; 2016 May; 43(5):2491. PubMed ID: 27147360
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Salient object detection based on multi-scale contrast.
    Wang H; Dai L; Cai Y; Sun X; Chen L
    Neural Netw; 2018 May; 101():47-56. PubMed ID: 29486380
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Automatic morphometry of nerve histological sections.
    Romero E; Cuisenaire O; Denef JF; Delbeke J; Macq B; Veraart C
    J Neurosci Methods; 2000 Apr; 97(2):111-22. PubMed ID: 10788665
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Autosomal recessive motor and sensory neuropathy with excessive myelin outfolding.
    Ohnishi A; Murai Y; Ikeda M; Fujita T; Furuya H; Kuroiwa Y
    Muscle Nerve; 1989 Jul; 12(7):568-75. PubMed ID: 2779605
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comparative morphometric evaluation of peripheral nerves and muscle fibers in myotonic dystrophy.
    Wang JF; Schröder JM
    Acta Neuropathol; 2000 Jan; 99(1):39-47. PubMed ID: 10651026
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Morphometric analysis of sural nerve in elderly diabetes mellitus.
    Kanda T
    Bull Tokyo Med Dent Univ; 1984 Dec; 31(4):209-24. PubMed ID: 6598419
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bone Marrow Cells Detection: A Technique for the Microscopic Image Analysis.
    Liu H; Cao H; Song E
    J Med Syst; 2019 Feb; 43(4):82. PubMed ID: 30798374
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A supervised framework for the registration and segmentation of white matter fiber tracts.
    Mayer A; Zimmerman-Moreno G; Shadmi R; Batikoff A; Greenspan H
    IEEE Trans Med Imaging; 2011 Jan; 30(1):131-45. PubMed ID: 20716499
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Overview of deep learning in medical imaging.
    Suzuki K
    Radiol Phys Technol; 2017 Sep; 10(3):257-273. PubMed ID: 28689314
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Diabetes increases mechanical sensitivity and causes morphological abnormalities in the sural nerve that are prevented by treadmill training.
    Severo Do Nascimento P; Lovatel GA; Ilha J; Schaan BD; Achaval M
    Muscle Nerve; 2013 Jan; 47(1):46-52. PubMed ID: 23042377
    [TBL] [Abstract][Full Text] [Related]  

  • 52. NerveTracker: a Python-based software toolkit for visualizing and tracking groups of nerve fibers in serial block-face microscopy with ultraviolet surface excitation images.
    Kolluru C; Joseph N; Seckler J; Fereidouni F; Levenson R; Shoffstall A; Jenkins M; Wilson D
    J Biomed Opt; 2024 Jul; 29(7):076501. PubMed ID: 38912214
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Learning a cost function for microscope image segmentation.
    Nilufar S; Perkins TJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():5506-9. PubMed ID: 25571241
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Automatic segmentation of white matter hyperintensities by an extended FitzHugh & Nagumo reaction diffusion model.
    Ji S; Ye C; Li F; Sun W; Zhang J; Huang Y; Fang J
    J Magn Reson Imaging; 2013 Feb; 37(2):343-50. PubMed ID: 23023955
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Semiautomatic segmentation of aortic valve from sequenced ultrasound image using a novel shape-constraint GCV model.
    Guo Y; Dong B; Wang B; Xie H; Zhang S; Gu L
    Med Phys; 2014 Jul; 41(7):072901. PubMed ID: 24989411
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A quantitative computer-assisted morphometric analysis of stimulation-induced injury to myelinated fibers in a peripheral nerve.
    McCreery DB; Yuen TG; Agnew WF; Bullara LA
    J Neurosci Methods; 1997 May; 73(2):159-68. PubMed ID: 9196287
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A superpixel-driven deep learning approach for the analysis of dermatological wounds.
    Blanco G; Traina AJM; Traina C; Azevedo-Marques PM; Jorge AES; de Oliveira D; Bedo MVN
    Comput Methods Programs Biomed; 2020 Jan; 183():105079. PubMed ID: 31542688
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Automated characterization of nerve fibers labeled fluorescently: determination of size, class and spatial distribution.
    Prodanov D; Feirabend HK
    Brain Res; 2008 Oct; 1233():35-50. PubMed ID: 18703026
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Automatic Identification of Human Erythrocytes in Microscopic Fecal Specimens.
    Liu L; Lei H; Zhang J; Yuan Y; Zhang Z; Liu J; Xie Y; Ni G; Liu Y
    J Med Syst; 2015 Nov; 39(11):146. PubMed ID: 26349804
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Memory based active contour algorithm using pixel-level classified images for colon crypt segmentation.
    Cohen A; Rivlin E; Shimshoni I; Sabo E
    Comput Med Imaging Graph; 2015 Jul; 43():150-64. PubMed ID: 25804442
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.