These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
728 related articles for article (PubMed ID: 28838222)
1. Effects of Increased NADPH Concentration by Metabolic Engineering of the Pentose Phosphate Pathway on Antibiotic Production and Sporulation in Jin XM; Chang YK; Lee JH; Hong SK J Microbiol Biotechnol; 2017 Oct; 27(10):1867-1876. PubMed ID: 28838222 [TBL] [Abstract][Full Text] [Related]
2. Carbon flux distribution in antibiotic-producing chemostat cultures of Streptomyces lividans. Avignone Rossa C; White J; Kuiper A; Postma PW; Bibb M; Teixeira de Mattos MJ Metab Eng; 2002 Apr; 4(2):138-50. PubMed ID: 12009793 [TBL] [Abstract][Full Text] [Related]
3. Overexpression of Shinorhizobium meliloti hemoprotein in Streptomyces lividans to enhance secondary metabolite production. Kim YJ; Sa SO; Chang YK; Hong SK; Hong YS J Microbiol Biotechnol; 2007 Dec; 17(12):2066-70. PubMed ID: 18167457 [TBL] [Abstract][Full Text] [Related]
4. Improved oxytetracycline production in Streptomyces rimosus M4018 by metabolic engineering of the G6PDH gene in the pentose phosphate pathway. Tang Z; Xiao C; Zhuang Y; Chu J; Zhang S; Herron PR; Hunter IS; Guo M Enzyme Microb Technol; 2011 Jun; 49(1):17-24. PubMed ID: 22112266 [TBL] [Abstract][Full Text] [Related]
5. Engineering of primary carbon metabolism for improved antibiotic production in Streptomyces lividans. Butler MJ; Bruheim P; Jovetic S; Marinelli F; Postma PW; Bibb MJ Appl Environ Microbiol; 2002 Oct; 68(10):4731-9. PubMed ID: 12324314 [TBL] [Abstract][Full Text] [Related]
6. Metabolic and evolutionary insights into the closely-related species Streptomyces coelicolor and Streptomyces lividans deduced from high-resolution comparative genomic hybridization. Lewis RA; Laing E; Allenby N; Bucca G; Brenner V; Harrison M; Kierzek AM; Smith CP BMC Genomics; 2010 Dec; 11():682. PubMed ID: 21122120 [TBL] [Abstract][Full Text] [Related]
7. Overexpression and biochemical characterization of DagA from Streptomyces coelicolor A3(2): an endo-type β-agarase producing neoagarotetraose and neoagarohexaose. Temuujin U; Chi WJ; Lee SY; Chang YK; Hong SK Appl Microbiol Biotechnol; 2011 Nov; 92(4):749-59. PubMed ID: 21655986 [TBL] [Abstract][Full Text] [Related]
8. Automatic Redirection of Carbon Flux between Glycolysis and Pentose Phosphate Pathway Using an Oxygen-Responsive Metabolic Switch in Kobayashi S; Kawaguchi H; Shirai T; Ninomiya K; Takahashi K; Kondo A; Tsuge Y ACS Synth Biol; 2020 Apr; 9(4):814-826. PubMed ID: 32202411 [TBL] [Abstract][Full Text] [Related]
9. Role of adenosine kinase in the control of Streptomyces differentiations: Loss of adenosine kinase suppresses sporulation and actinorhodin biosynthesis while inducing hyperproduction of undecylprodigiosin in Streptomyces lividans. Rajkarnikar A; Kwon HJ; Suh JW Biochem Biophys Res Commun; 2007 Nov; 363(2):322-8. PubMed ID: 17869216 [TBL] [Abstract][Full Text] [Related]
10. Genome-scale metabolic flux analysis of Streptomyces lividans growing on a complex medium. D'Huys PJ; Lule I; Vercammen D; Anné J; Van Impe JF; Bernaerts K J Biotechnol; 2012 Sep; 161(1):1-13. PubMed ID: 22641041 [TBL] [Abstract][Full Text] [Related]
13. Increased NADPH concentration obtained by metabolic engineering of the pentose phosphate pathway in Aspergillus niger. R Poulsen B; Nøhr J; Douthwaite S; Hansen LV; Iversen JJ; Visser J; Ruijter GJ FEBS J; 2005 Mar; 272(6):1313-25. PubMed ID: 15752350 [TBL] [Abstract][Full Text] [Related]
14. Quantitative Proteomics Analysis Confirmed Oxidative Metabolism Predominates in Streptomyces coelicolor versus Glycolytic Metabolism in Streptomyces lividans. Millan-Oropeza A; Henry C; Blein-Nicolas M; Aubert-Frambourg A; Moussa F; Bleton J; Virolle MJ J Proteome Res; 2017 Jul; 16(7):2597-2613. PubMed ID: 28560880 [TBL] [Abstract][Full Text] [Related]
15. Differential production of two antibiotics of Streptomyces coelicolor A3(2), actinorhodin and undecylprodigiosin, upon salt stress conditions. Sevcikova B; Kormanec J Arch Microbiol; 2004 May; 181(5):384-9. PubMed ID: 15054568 [TBL] [Abstract][Full Text] [Related]
16. Engineering of Streptomyces lividans for heterologous expression of secondary metabolite gene clusters. Ahmed Y; Rebets Y; Estévez MR; Zapp J; Myronovskyi M; Luzhetskyy A Microb Cell Fact; 2020 Jan; 19(1):5. PubMed ID: 31918711 [TBL] [Abstract][Full Text] [Related]
17. Functional analysis of SGR4635-induced enhancement of pigmented antibiotic production in Streptomyces lividans. Chi WJ; Lee SY; Lee J J Microbiol; 2011 Oct; 49(5):828-33. PubMed ID: 22068502 [TBL] [Abstract][Full Text] [Related]
18. Heterologous production of daptomycin in Streptomyces lividans. Penn J; Li X; Whiting A; Latif M; Gibson T; Silva CJ; Brian P; Davies J; Miao V; Wrigley SK; Baltz RH J Ind Microbiol Biotechnol; 2006 Feb; 33(2):121-8. PubMed ID: 16261359 [TBL] [Abstract][Full Text] [Related]
19. Antibiotic overproduction in Streptomyces coelicolor A3 2 mediated by phosphofructokinase deletion. Borodina I; Siebring J; Zhang J; Smith CP; van Keulen G; Dijkhuizen L; Nielsen J J Biol Chem; 2008 Sep; 283(37):25186-25199. PubMed ID: 18606812 [TBL] [Abstract][Full Text] [Related]
20. SarA influences the sporulation and secondary metabolism in Streptomyces coelicolor M145. Ou X; Zhang B; Zhang L; Dong K; Liu C; Zhao G; Ding X Acta Biochim Biophys Sin (Shanghai); 2008 Oct; 40(10):877-82. PubMed ID: 18850053 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]