These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 28838291)

  • 21. Zero-valent iron treatment of dark brown colored coffee effluent: Contributions of a core-shell structure to pollutant removals.
    Tomizawa M; Kurosu S; Kobayashi M; Kawase Y
    J Environ Manage; 2016 Dec; 183(Pt 3):478-487. PubMed ID: 27623374
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Novel heterogeneous catalysts in the wet peroxide oxidation of phenol.
    Ovejero G; Sotelo JL; Martinez F; Gordo L
    Water Sci Technol; 2001; 44(5):153-60. PubMed ID: 11695454
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Activity and resistance of iron-containing amorphous, zeolitic and mesostructured materials for wet peroxide oxidation of phenol.
    Calleja G; Melero JA; Martínez F; Molina R
    Water Res; 2005 May; 39(9):1741-50. PubMed ID: 15899272
    [TBL] [Abstract][Full Text] [Related]  

  • 24. N-Doped Carbon Xerogels as Pt Support for the Electro-Reduction of Oxygen.
    Alegre C; Sebastián D; Gálvez ME; Baquedano E; Moliner R; Aricò AS; Baglio V; Lázaro MJ
    Materials (Basel); 2017 Sep; 10(9):. PubMed ID: 28926984
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhancing the catalytic behaviour of HKUST-1 by graphene oxide for phenol oxidation.
    Huang K; Xu Y
    Environ Technol; 2021 Feb; 42(5):694-704. PubMed ID: 31293218
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Degradation of Toluene from Gas Streams by Heterogeneous Fenton Oxidation in a Slurry Bubble Reactor with Activated Carbon-Based Catalysts.
    Sampaio EFS; Guimarães V; Soares OSGP; Pereira MFR; Rodrigues CSD; Madeira LM
    Nanomaterials (Basel); 2022 Sep; 12(19):. PubMed ID: 36234402
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Promotion of nitrogen removal in a denitrification process elevated by zero-valent iron under low carbon-to-nitrogen ratio.
    Feng ZT; Ma X; Sun YJ; Zhou JM; Liao ZG; He ZC; Ding F; Zhang QQ
    Bioresour Technol; 2023 Oct; 386():129566. PubMed ID: 37506936
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Iron encapsulated in 3D N-doped carbon nanotube/porous carbon hybrid from waste biomass for enhanced oxidative activity.
    Yao Y; Zhang J; Wu G; Wang S; Hu Y; Su C; Xu T
    Environ Sci Pollut Res Int; 2017 Mar; 24(8):7679-7692. PubMed ID: 28124268
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of the behavior of ZVI/carbon composites from both commercial origin and from spent Li-ion batteries and mill scale for the removal of ibuprofen in water.
    Chen S; Li Z; Belver C; Gao G; Guan J; Guo Y; Li H; Ma J; Bedia J; Wójtowicz P
    J Environ Manage; 2020 Jun; 264():110480. PubMed ID: 32250905
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrospun spongy zero-valent iron as excellent electro-Fenton catalyst for enhanced sulfathiazole removal by a combination of adsorption and electro-catalytic oxidation.
    Chen YP; Yang LM; Paul Chen J; Zheng YM
    J Hazard Mater; 2019 Jun; 371():576-585. PubMed ID: 30878908
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Removal efficiency and mechanism of phycocyanin in water by zero-valent iron.
    Liu C; Chen DW; Ren YY; Chen W
    Chemosphere; 2019 Mar; 218():402-411. PubMed ID: 30476772
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Wet hydrogen peroxide catalytic oxidation of phenol with FeAC (iron-embedded activated carbon) catalysts.
    Liou RM; Chen SH; Huang CH; Hung MY; Chang JS; Lai CL
    Water Sci Technol; 2010; 61(6):1489-98. PubMed ID: 20351428
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Visible-light photo-Fenton oxidation of phenol with rGO-α-FeOOH supported on Al-doped mesoporous silica (MCM-41) at neutral pH: Performance and optimization of the catalyst.
    Wang Y; Liang M; Fang J; Fu J; Chen X
    Chemosphere; 2017 Sep; 182():468-476. PubMed ID: 28521161
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Removal of EDTA from low pH printed-circuit board wastewater in a fluidized zero valent iron reactor.
    Chen SS; Hsu HD; Lin YJ; Chin PY
    Water Sci Technol; 2008; 58(3):661-7. PubMed ID: 18725736
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Preparation of novel catalyst-free Fe
    Huang H; Zhang H; Yan Y
    J Hazard Mater; 2021 Apr; 407():124371. PubMed ID: 33248822
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Flower-like molybdenum disulfide decorated ZIF-8-derived nitrogen-doped dodecahedral carbon for electro-catalytic degradation of phenol.
    Fan L; Gong Y; Wan J; Wei Y; Shi H; Liu C
    Chemosphere; 2022 Jul; 298():134315. PubMed ID: 35301999
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Iron encapsulated in boron and nitrogen codoped carbon nanotubes as synergistic catalysts for Fenton-like reaction.
    Yao Y; Chen H; Qin J; Wu G; Lian C; Zhang J; Wang S
    Water Res; 2016 Sep; 101():281-291. PubMed ID: 27267476
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Removal of Acid Orange 51 by micro zero-valent iron under different operational conditions and evaluation of toxicity.
    Ghariani B; Messaoud M; Louati I; Mtibaà R; Nasri M; Mechichi T
    Environ Sci Pollut Res Int; 2019 Jun; 26(18):18392-18402. PubMed ID: 31049863
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effective degradation of phenol via catalytic wet peroxide oxidation over N, S, and Fe-tridoped activated carbon.
    Yang G; Mo S; Xing B; Dong J; Song X; Liu X; Yuan J
    Environ Pollut; 2020 Mar; 258():113687. PubMed ID: 31812525
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanisms for removal of p-nitrophenol from aqueous solution using zero-valent iron.
    Nakatsuji Y; Salehi Z; Kawase Y
    J Environ Manage; 2015 Apr; 152():183-91. PubMed ID: 25662484
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.