These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 28838291)

  • 41. Preparation of Cu-ZSM-5 catalysts by chemical vapour deposition for catalytic wet peroxide oxidation of phenol in a fixed bed reactor.
    He D; Zhang H; Yan Y
    R Soc Open Sci; 2018 Apr; 5(4):172364. PubMed ID: 29765683
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effective degradation of para-chloronitrobenzene through a sequential treatment using zero-valent iron reduction and Fenton oxidation.
    Le C; Liang J; Wu J; Li P; Wang X; Zhu N; Wu P; Yang B
    Water Sci Technol; 2011; 64(10):2126-31. PubMed ID: 22105138
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Catalytic properties of carbon materials for wet oxidation of aniline.
    Gomes HT; Machado BF; Ribeiro A; Moreira I; Rosário M; Silva AM; Figueiredo JL; Faria JL
    J Hazard Mater; 2008 Nov; 159(2-3):420-6. PubMed ID: 18394796
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Properties of iron-based mesoporous silica for the CWPO of phenol: a comparison between impregnation and co-condensation routes.
    Xiang L; Royer S; Zhang H; Tatibouët JM; Barrault J; Valange S
    J Hazard Mater; 2009 Dec; 172(2-3):1175-84. PubMed ID: 19709804
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The use of zero-valent iron for groundwater remediation and wastewater treatment: a review.
    Fu F; Dionysiou DD; Liu H
    J Hazard Mater; 2014 Feb; 267():194-205. PubMed ID: 24457611
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Enhanced As(III) oxidation and removal by combined use of zero valent iron and hydrogen peroxide in aerated waters at neutral pH values.
    Katsoyiannis IA; Voegelin A; Zouboulis AI; Hug SJ
    J Hazard Mater; 2015 Oct; 297():1-7. PubMed ID: 25935405
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Enhanced catalytic activity of α-FeOOH-rGO supported on active carbon fiber (ACF) for degradation of phenol and quinolone in the solar-Fenton system.
    Wang Y; Tian H; Yu Y; Hu C
    Chemosphere; 2018 Oct; 208():931-941. PubMed ID: 30068037
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Pressurized CO2/zero valent iron system for nitrate removal.
    Li CW; Chen YM; Yen WS
    Chemosphere; 2007 Jun; 68(2):310-6. PubMed ID: 17280698
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Hybrid zero valent iron (ZVI)/H
    Lee SD; Mallampati SR; Lee BH
    J Air Waste Manag Assoc; 2017 Apr; 67(4):475-487. PubMed ID: 27802127
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Amicarbazone degradation promoted by ZVI-activated persulfate: study of relevant variables for practical application.
    Graça CAL; Fugita LTN; de Velosa AC; Teixeira ACSC
    Environ Sci Pollut Res Int; 2018 Feb; 25(6):5474-5483. PubMed ID: 29214480
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fitting Biochars and Activated Carbons from Residues of the Olive Oil Industry as Supports of Fe- Catalysts for the Heterogeneous Fenton-Like Treatment of Simulated Olive Mill Wastewater.
    Esteves BM; Morales-Torres S; Maldonado-Hódar FJ; Madeira LM
    Nanomaterials (Basel); 2020 May; 10(5):. PubMed ID: 32370056
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Microbial reduction of nitrate in the presence of zero-valent iron.
    Zhang Y; Douglas GB; Kaksonen AH; Cui L; Ye Z
    Sci Total Environ; 2019 Jan; 646():1195-1203. PubMed ID: 30235605
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The effects of melamine on the formation of carbon xerogel derived from resorcinol and formaldehyde and its performance for supercapacitor.
    Lu C; Huang YH; Hong JS; Wu YJ; Li J; Cheng JP
    J Colloid Interface Sci; 2018 Aug; 524():209-218. PubMed ID: 29655139
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Intensified-Fenton process for the treatment of phenol aqueous solutions.
    Pariente MI; Molina R; Melero JA; Botas JÁ; Martínez F
    Water Sci Technol; 2015; 71(3):359-65. PubMed ID: 25714634
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Zero-valent iron coupled plant biomass for enhancing the denitrification performance of ecological floating bed.
    Peng Y; He S; Gu X; Yan P; Tang L
    Bioresour Technol; 2021 Dec; 341():125820. PubMed ID: 34454238
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Synergic mechanism of adsorption and metal-free catalysis for phenol degradation by N-doped graphene aerogel.
    Ren X; Guo H; Feng J; Si P; Zhang L; Ci L
    Chemosphere; 2018 Jan; 191():389-399. PubMed ID: 29054079
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Removal of selenite by zero-valent iron combined with ultrasound: Se(IV) concentration changes, Se(VI) generation, and reaction mechanism.
    Fu F; Lu J; Cheng Z; Tang B
    Ultrason Sonochem; 2016 Mar; 29():328-36. PubMed ID: 26585013
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Bifunctional resin-ZVI composites for effective removal of arsenite through simultaneous adsorption and oxidation.
    Du Q; Zhang S; Pan B; Lv L; Zhang W; Zhang Q
    Water Res; 2013 Oct; 47(16):6064-74. PubMed ID: 23969401
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Performance and mechanism of Cr(VI) removal by zero-valent iron loaded onto expanded graphite.
    Xu C; Yang W; Liu W; Sun H; Jiao C; Lin AJ
    J Environ Sci (China); 2018 May; 67():14-22. PubMed ID: 29778146
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Degradation of Levofloxacin by a green zero-valent iron-loaded carbon composite activating peroxydisulfate system: Reactivity, products and mechanism.
    Huang ST; Lei YQ; Guo PR; Zhang WX; Liang JY; Chen X; Xu JW; Diao ZH
    Chemosphere; 2023 Nov; 340():139899. PubMed ID: 37611769
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.