BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

415 related articles for article (PubMed ID: 28838811)

  • 21. TMEM65 regulates NCLX-dependent mitochondrial calcium efflux.
    Garbincius JF; Salik O; Cohen HM; Choya-Foces C; Mangold AS; Makhoul AD; Schmidt AE; Khalil DY; Doolittle JJ; Wilkinson AS; Murray EK; Lazaropoulos MP; Hildebrand AN; Tomar D; Elrod JW
    bioRxiv; 2023 Oct; ():. PubMed ID: 37873405
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The destiny of Ca(2+) released by mitochondria.
    Takeuchi A; Kim B; Matsuoka S
    J Physiol Sci; 2015 Jan; 65(1):11-24. PubMed ID: 24994533
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Overexpression of Mitochondrial Calcium Uniporter Causes Neuronal Death.
    Granatiero V; Pacifici M; Raffaello A; De Stefani D; Rizzuto R
    Oxid Med Cell Longev; 2019; 2019():1681254. PubMed ID: 31737163
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Mitochondrial Na
    Liu TC; Tang XM; Duan R; Ma L; Zhu L; Zhang QG
    Adv Exp Med Biol; 2018; 1072():281-285. PubMed ID: 30178359
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enjoy the Trip: Calcium in Mitochondria Back and Forth.
    De Stefani D; Rizzuto R; Pozzan T
    Annu Rev Biochem; 2016 Jun; 85():161-92. PubMed ID: 27145841
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tau inhibits mitochondrial calcium efflux and makes neurons vulnerable to calcium-induced cell death.
    Britti E; Ros J; Esteras N; Abramov AY
    Cell Calcium; 2020 Mar; 86():102150. PubMed ID: 31918031
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Calpain-Inhibitors Protect Frataxin-Deficient Dorsal Root Ganglia Neurons from Loss of Mitochondrial Na
    Britti E; Delaspre F; Tamarit J; Ros J
    Neurochem Res; 2021 Jan; 46(1):108-119. PubMed ID: 32249386
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mitochondrial permeability transition pore: a promising target for the treatment of Parkinson's disease.
    Rasheed MZ; Tabassum H; Parvez S
    Protoplasma; 2017 Jan; 254(1):33-42. PubMed ID: 26825389
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Distinct properties of Ca
    Rysted JE; Lin Z; Walters GC; Rauckhorst AJ; Noterman M; Liu G; Taylor EB; Strack S; Usachev YM
    Cell Calcium; 2021 Jun; 96():102382. PubMed ID: 33684833
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dichotomous role of the human mitochondrial Na
    Pathak T; Gueguinou M; Walter V; Delierneux C; Johnson MT; Zhang X; Xin P; Yoast RE; Emrich SM; Yochum GS; Sekler I; Koltun WA; Gill DL; Hempel N; Trebak M
    Elife; 2020 Sep; 9():. PubMed ID: 32914752
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of the mitochondrial NCX in the mechanism of neurodegeneration in Parkinson's disease.
    Wood-Kaczmar A; Deas E; Wood NW; Abramov AY
    Adv Exp Med Biol; 2013; 961():241-9. PubMed ID: 23224884
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Signaling pathways regulating mitochondrial calcium efflux - a commentary on Rozenfeld et al. "Essential role of the mitochondrial Na
    Cohen HM; Salik O; Elrod JW
    Cell Calcium; 2023 Jul; 113():102764. PubMed ID: 37271053
    [TBL] [Abstract][Full Text] [Related]  

  • 33. After half a century mitochondrial calcium in- and efflux machineries reveal themselves.
    Drago I; Pizzo P; Pozzan T
    EMBO J; 2011 Sep; 30(20):4119-25. PubMed ID: 21934651
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The m-AAA Protease Associated with Neurodegeneration Limits MCU Activity in Mitochondria.
    König T; Tröder SE; Bakka K; Korwitz A; Richter-Dennerlein R; Lampe PA; Patron M; Mühlmeister M; Guerrero-Castillo S; Brandt U; Decker T; Lauria I; Paggio A; Rizzuto R; Rugarli EI; De Stefani D; Langer T
    Mol Cell; 2016 Oct; 64(1):148-162. PubMed ID: 27642048
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Understanding the susceptibility of dopamine neurons to mitochondrial stressors in Parkinson's disease.
    Haddad D; Nakamura K
    FEBS Lett; 2015 Dec; 589(24 Pt A):3702-13. PubMed ID: 26526613
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mitochondrial Ca(2+) Processing by a Unit of Mitochondrial Ca(2+) Uniporter and Na(+)/Ca(2+) Exchanger Supports the Neuronal Ca(2+) Influx via Activated Glutamate Receptors.
    Strokin M; Reiser G
    Neurochem Res; 2016 Jun; 41(6):1250-62. PubMed ID: 26842930
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhanced NCLX-dependent mitochondrial Ca
    Garbincius JF; Luongo TS; Jadiya P; Hildebrand AN; Kolmetzky DW; Mangold AS; Roy R; Ibetti J; Nwokedi M; Koch WJ; Elrod JW
    J Mol Cell Cardiol; 2022 Jun; 167():52-66. PubMed ID: 35358843
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The gain-of-function enhancement of IP3-receptor channel gating by familial Alzheimer's disease-linked presenilin mutants increases the open probability of mitochondrial permeability transition pore.
    Toglia P; Ullah G
    Cell Calcium; 2016 Jul; 60(1):13-24. PubMed ID: 27184076
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mitochondrial localization of NCXs: Balancing calcium and energy homeostasis.
    Magi S; Piccirillo S; Preziuso A; Amoroso S; Lariccia V
    Cell Calcium; 2020 Mar; 86():102162. PubMed ID: 31981913
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mitochondrial Ca2+ Transport: Mechanisms, Molecular Structures, and Role in Cells.
    Belosludtsev KN; Dubinin MV; Belosludtseva NV; Mironova GD
    Biochemistry (Mosc); 2019 Jun; 84(6):593-607. PubMed ID: 31238859
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.