These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 28839008)

  • 1. High dislocation density-induced large ductility in deformed and partitioned steels.
    He BB; Hu B; Yen HW; Cheng GJ; Wang ZK; Luo HW; Huang MX
    Science; 2017 Sep; 357(6355):1029-1032. PubMed ID: 28839008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dislocation Strengthening without Ductility Trade-off in Metastable Austenitic Steels.
    Liu J; Jin Y; Fang X; Chen C; Feng Q; Liu X; Chen Y; Suo T; Zhao F; Huang T; Wang H; Wang X; Fang Y; Wei Y; Meng L; Lu J; Yang W
    Sci Rep; 2016 Oct; 6():35345. PubMed ID: 27739481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Austempering Processes on the Tensile Properties and the Work-Hardening Behavior of Austempered Bainitic Steels Below the Martensite Start Temperature.
    Wang K; Hu F; Zhou W; Yershov S; Li L; Wu K
    Materials (Basel); 2023 Aug; 16(16):. PubMed ID: 37629853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dramatic improvement of strain hardening and ductility to 95% in highly-deformable high-strength duplex lightweight steels.
    Sohn SS; Song H; Kwak JH; Lee S
    Sci Rep; 2017 May; 7(1):1927. PubMed ID: 28512311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ductile 2-GPa steels with hierarchical substructure.
    Li Y; Yuan G; Li L; Kang J; Yan F; Du P; Raabe D; Wang G
    Science; 2023 Jan; 379(6628):168-173. PubMed ID: 36634172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative Study of the Tempering Behavior of Different Martensitic Steels by Means of In-Situ Diffractometry and Dilatometry.
    Hunkel M; Dong J; Epp J; Kaiser D; Dietrich S; Schulze V; Rajaei A; Hallstedt B; Broeckmann C
    Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33182632
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Work hardening behavior of hot-rolled metastable Fe
    Kwon H; Harjo S; Kawasaki T; Gong W; Jeong SG; Kim ES; Sathiyamoorthi P; Kato H; Kim HS
    Sci Technol Adv Mater; 2022; 23(1):579-586. PubMed ID: 36212683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hierarchical Multiple Precursors Induced Heterogeneous Structures in Super Austenitic Stainless Steels by Cryogenic Rolling and Annealing.
    Tan D; Fu B; Guan W; Li Y; Guo Y; Wei L; Ding Y
    Materials (Basel); 2023 Sep; 16(18):. PubMed ID: 37763575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Austenitizing Temperature on Tensile and Impact Properties of a Martensitic Stainless Steel Containing Metastable Retained Austenite.
    Deng B; Yang D; Wang G; Hou Z; Yi H
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33672618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature-Stimulated Morphological Features of Advanced High-Strength Medium-Mn TRIP Steel.
    Kozłowska A; Grajcar A; Matus K; Janik A; Radwański K; Pakieła W
    Microsc Microanal; 2022 Feb; ():1-8. PubMed ID: 35105419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation.
    Jiang S; Wang H; Wu Y; Liu X; Chen H; Yao M; Gault B; Ponge D; Raabe D; Hirata A; Chen M; Wang Y; Lu Z
    Nature; 2017 Apr; 544(7651):460-464. PubMed ID: 28397822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon content-tuned martensite transformation in low-alloy TRIP steels.
    Shen YF; Dong XX; Song XT; Jia N
    Sci Rep; 2019 May; 9(1):7559. PubMed ID: 31101836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical Behavior of Multi-Phase Steels Comprising Retained Austenite.
    Perdahcıoğlu ES; Geijselaers HJM
    Materials (Basel); 2022 Jan; 15(2):. PubMed ID: 35057217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off.
    Li Z; Pradeep KG; Deng Y; Raabe D; Tasan CC
    Nature; 2016 Jun; 534(7606):227-30. PubMed ID: 27279217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Intercritical Annealing Temperature on Mechanical Properties of Fe-7.9Mn-0.14Si-0.05Al-0.07C Steel.
    Zhao X; Shen Y; Qiu L; Liu Y; Sun X; Zuo L
    Materials (Basel); 2014 Dec; 7(12):7891-7906. PubMed ID: 28788282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deformation behavior of duplex austenite and
    Kwon KH; Suh BC; Baik SI; Kim YW; Choi JK; Kim NJ
    Sci Technol Adv Mater; 2013 Feb; 14(1):014204. PubMed ID: 27877552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stability of retained austenite in high carbon steel under compressive stress: an investigation from macro to nano scale.
    Hossain R; Pahlevani F; Quadir MZ; Sahajwalla V
    Sci Rep; 2016 Oct; 6():34958. PubMed ID: 27725722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrahigh Charpy impact toughness (~450J) achieved in high strength ferrite/martensite laminated steels.
    Cao W; Zhang M; Huang C; Xiao S; Dong H; Weng Y
    Sci Rep; 2017 Feb; 7():41459. PubMed ID: 28150692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dataset for machine learning of microstructures for 9% Cr steels.
    Rozman KA; Doğan ÖN; Chinn R; Jablonksi PD; Detrois M; Gao MC
    Data Brief; 2022 Dec; 45():108714. PubMed ID: 36425963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical Behaviors of Microalloyed TRIP-Assisted Annealed Martensitic Steels under Hydrogen Charging.
    Yang X; Yu H; Song C; Li L
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.