These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 28839068)
21. High-Performance Dielectric Elastomer Nanogenerator for Efficient Energy Harvesting and Sensing via Alternative Current Method. Xu Z; Bao K; Di K; Chen H; Tan J; Xie X; Shao Y; Cai J; Lin S; Cheng T; E S; Liu K; Wang ZL Adv Sci (Weinh); 2022 Jun; 9(18):e2201098. PubMed ID: 35396790 [TBL] [Abstract][Full Text] [Related]
22. High-power biofuel cell textiles from woven biscrolled carbon nanotube yarns. Kwon CH; Lee SH; Choi YB; Lee JA; Kim SH; Kim HH; Spinks GM; Wallace GG; Lima MD; Kozlov ME; Baughman RH; Kim SJ Nat Commun; 2014 Jun; 5():3928. PubMed ID: 24887514 [TBL] [Abstract][Full Text] [Related]
23. Large-Stroke Electrochemical Carbon Nanotube/Graphene Hybrid Yarn Muscles. Qiao J; Di J; Zhou S; Jin K; Zeng S; Li N; Fang S; Song Y; Li M; Baughman RH; Li Q Small; 2018 Sep; 14(38):e1801883. PubMed ID: 30152590 [TBL] [Abstract][Full Text] [Related]
25. Energy harvesting from cerebrospinal fluid pressure fluctuations for self-powered neural implants. Beker L; Benet A; Meybodi AT; Eovino B; Pisano AP; Lin L Biomed Microdevices; 2017 Jun; 19(2):32. PubMed ID: 28425028 [TBL] [Abstract][Full Text] [Related]
26. Overtwisted, resolvable carbon nanotube yarn entanglement as strain sensors and rotational actuators. Li Y; Shang Y; He X; Peng Q; Du S; Shi E; Wu S; Li Z; Li P; Cao A ACS Nano; 2013 Sep; 7(9):8128-35. PubMed ID: 23962111 [TBL] [Abstract][Full Text] [Related]
27. Electrochemically Powered, Energy-Conserving Carbon Nanotube Artificial Muscles. Lee JA; Li N; Haines CS; Kim KJ; Lepró X; Ovalle-Robles R; Kim SJ; Baughman RH Adv Mater; 2017 Aug; 29(31):. PubMed ID: 28627770 [TBL] [Abstract][Full Text] [Related]
28. Self-Powered Wireless Sensor Using a Pressure Fluctuation Energy Harvester. Aranda JJ; Bader S; Oelmann B Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33672194 [TBL] [Abstract][Full Text] [Related]
29. Asymmetric carbon nanotube-MnO₂ two-ply yarn supercapacitors for wearable electronics. Su F; Miao M Nanotechnology; 2014 Apr; 25(13):135401. PubMed ID: 24583526 [TBL] [Abstract][Full Text] [Related]
30. Elastic carbon nanotube straight yarns embedded with helical loops. Shang Y; Li Y; He X; Zhang L; Li Z; Li P; Shi E; Wu S; Cao A Nanoscale; 2013 Mar; 5(6):2403-10. PubMed ID: 23400109 [TBL] [Abstract][Full Text] [Related]
31. High-performance two-ply yarn supercapacitors based on carbon nanotube yarns dotted with Co3 O4 and NiO nanoparticles. Su F; Lv X; Miao M Small; 2015 Feb; 11(7):854-61. PubMed ID: 25277293 [TBL] [Abstract][Full Text] [Related]
32. Fast Torsional Artificial Muscles from NiTi Twisted Yarns. Mirvakili SM; Hunter IW ACS Appl Mater Interfaces; 2017 May; 9(19):16321-16326. PubMed ID: 28447459 [TBL] [Abstract][Full Text] [Related]
33. Hierarchically Plied Mechano-Electrochemical Energy Harvesting Using a Scalable Kinematic Sensing Textile Woven from a Graphene-Coated Commercial Cotton Yarn. Kim J; Noh JH; Chun S; Kim SJ; Sim HJ; Choi C Nano Lett; 2023 Aug; 23(16):7623-7632. PubMed ID: 37530440 [TBL] [Abstract][Full Text] [Related]
34. Ultrafast charge and discharge biscrolled yarn supercapacitors for textiles and microdevices. Lee JA; Shin MK; Kim SH; Cho HU; Spinks GM; Wallace GG; Lima MD; Lepró X; Kozlov ME; Baughman RH; Kim SJ Nat Commun; 2013; 4():1970. PubMed ID: 23733169 [TBL] [Abstract][Full Text] [Related]
35. Implanted Carbon Nanotubes Harvest Electrical Energy from Heartbeat for Medical Implants. Ruhparwar A; Osswald A; Kim H; Wakili R; Müller J; Pizanis N; Al-Rashid F; Hendgen-Cotta U; Rassaf T; Kim SJ Adv Mater; 2024 Aug; 36(32):e2313688. PubMed ID: 38685135 [TBL] [Abstract][Full Text] [Related]
36. Hydro-actuation of hybrid carbon nanotube yarn muscles. Gu X; Fan Q; Yang F; Cai L; Zhang N; Zhou W; Zhou W; Xie S Nanoscale; 2016 Oct; 8(41):17881-17886. PubMed ID: 27714203 [TBL] [Abstract][Full Text] [Related]
37. High voltage generation from lead-free magnetoelectric coaxial nanotube arrays and their applications in nano energy harvesters. Lekha CS; Kumar AS; Vivek S; Rasi UP; Saravanan KV; Nandakumar K; Nair SS Nanotechnology; 2017 Feb; 28(5):055402. PubMed ID: 28008890 [TBL] [Abstract][Full Text] [Related]
38. High-Power Hydro-Actuators Fabricated from Biomimetic Carbon Nanotube Coiled Yarns with Fast Electrothermal Recovery. Son W; Lee JM; Kim SH; Kim HW; Cho SB; Suh D; Chun S; Choi C Nano Lett; 2022 Mar; 22(6):2470-2478. PubMed ID: 35254078 [TBL] [Abstract][Full Text] [Related]
39. Hybrid dual-functioning electrodes for combined ambient energy harvesting and charge storage: Towards self-powered systems. Falk M; Shleev S Biosens Bioelectron; 2019 Feb; 126():275-291. PubMed ID: 30445303 [TBL] [Abstract][Full Text] [Related]
40. Bio-inspired, Moisture-Powered Hybrid Carbon Nanotube Yarn Muscles. Kim SH; Kwon CH; Park K; Mun TJ; Lepró X; Baughman RH; Spinks GM; Kim SJ Sci Rep; 2016 Mar; 6():23016. PubMed ID: 26973137 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]