These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 28839094)

  • 1. Quantitative tests of a reconstitution model for RNA folding thermodynamics and kinetics.
    Bisaria N; Greenfeld M; Limouse C; Mabuchi H; Herschlag D
    Proc Natl Acad Sci U S A; 2017 Sep; 114(37):E7688-E7696. PubMed ID: 28839094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic and thermodynamic framework for P4-P6 RNA reveals tertiary motif modularity and modulation of the folding preferred pathway.
    Bisaria N; Greenfeld M; Limouse C; Pavlichin DS; Mabuchi H; Herschlag D
    Proc Natl Acad Sci U S A; 2016 Aug; 113(34):E4956-65. PubMed ID: 27493222
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-Molecule Fluorescence Reveals Commonalities and Distinctions among Natural and in Vitro-Selected RNA Tertiary Motifs in a Multistep Folding Pathway.
    Bonilla S; Limouse C; Bisaria N; Gebala M; Mabuchi H; Herschlag D
    J Am Chem Soc; 2017 Dec; 139(51):18576-18589. PubMed ID: 29185740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing the kinetic and thermodynamic consequences of the tetraloop/tetraloop receptor monovalent ion-binding site in P4-P6 RNA by smFRET.
    Bisaria N; Herschlag D
    Biochem Soc Trans; 2015 Apr; 43(2):172-8. PubMed ID: 25849913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measuring the energetic coupling of tertiary contacts in RNA folding using single molecule fluorescence resonance energy transfer.
    Greenfeld M; Herschlag D
    Methods Enzymol; 2010; 472():205-20. PubMed ID: 20580966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From static to dynamic: the need for structural ensembles and a predictive model of RNA folding and function.
    Herschlag D; Allred BE; Gowrishankar S
    Curr Opin Struct Biol; 2015 Feb; 30():125-133. PubMed ID: 25744941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tests of Kramers' Theory at the Single-Molecule Level: Evidence for Folding of an Isolated RNA Tertiary Interaction at the Viscous Speed Limit.
    Dupuis NF; Holmstrom ED; Nesbitt DJ
    J Phys Chem B; 2018 Sep; 122(38):8796-8804. PubMed ID: 30078323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An early transition state for folding of the P4-P6 RNA domain.
    Silverman SK; Cech TR
    RNA; 2001 Feb; 7(2):161-6. PubMed ID: 11233973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The GAAA tetraloop-receptor interaction contributes differentially to folding thermodynamics and kinetics for the P4-P6 RNA domain.
    Young BT; Silverman SK
    Biochemistry; 2002 Oct; 41(41):12271-6. PubMed ID: 12369814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Throughput Investigation of Diverse Junction Elements in RNA Tertiary Folding.
    Denny SK; Bisaria N; Yesselman JD; Das R; Herschlag D; Greenleaf WJ
    Cell; 2018 Jul; 174(2):377-390.e20. PubMed ID: 29961580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular-crowding effects on single-molecule RNA folding/unfolding thermodynamics and kinetics.
    Dupuis NF; Holmstrom ED; Nesbitt DJ
    Proc Natl Acad Sci U S A; 2014 Jun; 111(23):8464-9. PubMed ID: 24850865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-molecule transition-state analysis of RNA folding.
    Bokinsky G; Rueda D; Misra VK; Rhodes MM; Gordus A; Babcock HP; Walter NG; Zhuang X
    Proc Natl Acad Sci U S A; 2003 Aug; 100(16):9302-7. PubMed ID: 12869691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-molecule RNA science.
    Zhuang X
    Annu Rev Biophys Biomol Struct; 2005; 34():399-414. PubMed ID: 15869396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An RNA folding motif: GNRA tetraloop-receptor interactions.
    Fiore JL; Nesbitt DJ
    Q Rev Biophys; 2013 Aug; 46(3):223-64. PubMed ID: 23915736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The molecular interactions that stabilize RNA tertiary structure: RNA motifs, patterns, and networks.
    Butcher SE; Pyle AM
    Acc Chem Res; 2011 Dec; 44(12):1302-11. PubMed ID: 21899297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamic origins of monovalent facilitated RNA folding.
    Holmstrom ED; Fiore JL; Nesbitt DJ
    Biochemistry; 2012 May; 51(18):3732-43. PubMed ID: 22448852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct measurement of tertiary contact cooperativity in RNA folding.
    Sattin BD; Zhao W; Travers K; Chu S; Herschlag D
    J Am Chem Soc; 2008 May; 130(19):6085-7. PubMed ID: 18429611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energetics and cooperativity of tertiary hydrogen bonds in RNA structure.
    Silverman SK; Cech TR
    Biochemistry; 1999 Jul; 38(27):8691-702. PubMed ID: 10393544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complex RNA folding kinetics revealed by single-molecule FRET and hidden Markov models.
    Keller BG; Kobitski A; Jäschke A; Nienhaus GU; Noé F
    J Am Chem Soc; 2014 Mar; 136(12):4534-43. PubMed ID: 24568646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Preferential Counterion Interactions on the Specificity of RNA Folding.
    Roh JH; Kilburn D; Behrouzi R; Sung W; Briber RM; Woodson SA
    J Phys Chem Lett; 2018 Oct; 9(19):5726-5732. PubMed ID: 30211556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.