BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 28839149)

  • 1. Microstructure-based constitutive model of coronary artery with active smooth muscle contraction.
    Chen H; Kassab GS
    Sci Rep; 2017 Aug; 7(1):9339. PubMed ID: 28839149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A validated 3D microstructure-based constitutive model of coronary artery adventitia.
    Chen H; Guo X; Luo T; Kassab GS
    J Appl Physiol (1985); 2016 Jul; 121(1):333-42. PubMed ID: 27174925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Linking the region-specific tissue microstructure to the biaxial mechanical properties of the porcine left anterior descending artery.
    Pineda-Castillo SA; Aparicio-Ruiz S; Burns MM; Laurence DW; Bradshaw E; Gu T; Holzapfel GA; Lee CH
    Acta Biomater; 2022 Sep; 150():295-309. PubMed ID: 35905825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microstructure-based biomechanics of coronary arteries in health and disease.
    Chen H; Kassab GS
    J Biomech; 2016 Aug; 49(12):2548-59. PubMed ID: 27086118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimentally validated microstructural 3D constitutive model of coronary arterial media.
    Hollander Y; Durban D; Lu X; Kassab GS; Lanir Y
    J Biomech Eng; 2011 Mar; 133(3):031007. PubMed ID: 21303183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Experimental measurement and modeling analysis of active and passive mechanical properties of arterial vessel wall].
    Feng Y; Wu H; Huo Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2020 Dec; 37(6):939-947. PubMed ID: 33369332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biaxial vasoactivity of porcine coronary artery.
    Huo Y; Cheng Y; Zhao X; Lu X; Kassab GS
    Am J Physiol Heart Circ Physiol; 2012 May; 302(10):H2058-63. PubMed ID: 22427520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microstructural quantification of collagen fiber orientations and its integration in constitutive modeling of the porcine carotid artery.
    Sáez P; García A; Peña E; Gasser TC; Martínez MA
    Acta Biomater; 2016 Mar; 33():183-93. PubMed ID: 26827780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptation of a planar microbiaxial optomechanical device for the tubular biaxial microstructural and macroscopic characterization of small vascular tissues.
    Keyes JT; Haskett DG; Utzinger U; Azhar M; Vande Geest JP
    J Biomech Eng; 2011 Jul; 133(7):075001. PubMed ID: 21823753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microstructure-based finite element model of left ventricle passive inflation.
    Xi C; Kassab GS; Lee LC
    Acta Biomater; 2019 May; 90():241-253. PubMed ID: 30980939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of material parameter variability on the predicted coronary artery biomechanical environment via uncertainty quantification.
    Berggren CC; Jiang D; Jack Wang YF; Bergquist JA; Rupp LC; Liu Z; MacLeod RS; Narayan A; Timmins LH
    Biomech Model Mechanobiol; 2024 Jun; 23(3):927-940. PubMed ID: 38361087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanical relevance of the microstructure in artery walls with a focus on passive and active components.
    Holzapfel GA; Ogden RW
    Am J Physiol Heart Circ Physiol; 2018 Sep; 315(3):H540-H549. PubMed ID: 29799274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microstructural constitutive model of active coronary media.
    Chen H; Luo T; Zhao X; Lu X; Huo Y; Kassab GS
    Biomaterials; 2013 Oct; 34(31):7575-83. PubMed ID: 23859656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alterations in regional vascular geometry produced by theoretical stent implantation influence distributions of wall shear stress: analysis of a curved coronary artery using 3D computational fluid dynamics modeling.
    LaDisa JF; Olson LE; Douglas HA; Warltier DC; Kersten JR; Pagel PS
    Biomed Eng Online; 2006 Jun; 5():40. PubMed ID: 16780592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The biaxial active mechanical properties of the porcine primary renal artery.
    Zhou B; Rachev A; Shazly T
    J Mech Behav Biomed Mater; 2015 Aug; 48():28-37. PubMed ID: 25913605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Imaging coronary artery microstructure using second-harmonic and two-photon fluorescence microscopy.
    Zoumi A; Lu X; Kassab GS; Tromberg BJ
    Biophys J; 2004 Oct; 87(4):2778-86. PubMed ID: 15454469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Combination of Constitutive Damage Model and Artificial Neural Networks to Characterize the Mechanical Properties of the Healthy and Atherosclerotic Human Coronary Arteries.
    Karimi A; Rahmati SM; Sera T; Kudo S; Navidbakhsh M
    Artif Organs; 2017 Sep; 41(9):E103-E117. PubMed ID: 28150399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Planar biaxial characterization of diseased human coronary and carotid arteries for computational modeling.
    Kural MH; Cai M; Tang D; Gwyther T; Zheng J; Billiar KL
    J Biomech; 2012 Mar; 45(5):790-8. PubMed ID: 22236530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-layer model of coronary artery vasoactivity.
    Huo Y; Zhao X; Cheng Y; Lu X; Kassab GS
    J Appl Physiol (1985); 2013 May; 114(10):1451-9. PubMed ID: 23471951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microstructural and mechanical characterization of the layers of human descending thoracic aortas.
    Amabili M; Asgari M; Breslavsky ID; Franchini G; Giovanniello F; Holzapfel GA
    Acta Biomater; 2021 Oct; 134():401-421. PubMed ID: 34303867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.