These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 28839149)

  • 21. Microstructurally motivated constitutive modeling of mouse arteries cultured under altered axial stretch.
    Hansen L; Wan W; Gleason RL
    J Biomech Eng; 2009 Oct; 131(10):101015. PubMed ID: 19831485
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Constitutive modeling of coronary arterial media--comparison of three model classes.
    Hollander Y; Durban D; Lu X; Kassab GS; Lanir Y
    J Biomech Eng; 2011 Jun; 133(6):061008. PubMed ID: 21744928
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Differential mechanical response and microstructural organization between non-human primate femoral and carotid arteries.
    Wang R; Raykin J; Li H; Gleason RL; Brewster LP
    Biomech Model Mechanobiol; 2014 Oct; 13(5):1041-51. PubMed ID: 24532266
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Implementing a micromechanical model into a finite element code to simulate the mechanical and microstructural response of arteries.
    Bianchi D; Morin C; Badel P
    Biomech Model Mechanobiol; 2020 Dec; 19(6):2553-2566. PubMed ID: 32607921
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modeling the effects of muscle contraction on the mechanical response and circumferential stability of coronary arteries.
    Sanft R; Power A; Nicholson C
    Math Biosci; 2019 Sep; 315():108223. PubMed ID: 31276682
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Changes in biomechanical properties of the coronary artery wall contribute to maintained contractile responses to endothelin-1 in atherosclerosis.
    Ooi CY; Sutcliffe MP; Davenport AP; Maguire JJ
    Life Sci; 2014 Nov; 118(2):424-9. PubMed ID: 24721512
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A fiber-progressive-engagement model to evaluate the composition, microstructure, and nonlinear pseudoelastic behavior of porcine arteries and decellularized derivatives.
    Lin CH; Kao YC; Lin YH; Ma H; Tsay RY
    Acta Biomater; 2016 Dec; 46():101-111. PubMed ID: 27667016
    [TBL] [Abstract][Full Text] [Related]  

  • 28. On the in-series and in-parallel contribution of elastin assessed by a structure-based biomechanical model of the arterial wall.
    Roy S; Tsamis A; Prod'hom G; Stergiopulos N
    J Biomech; 2008; 41(4):737-43. PubMed ID: 18456913
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of enzyme-based removal of collagen and elastin constituents on the biaxial mechanical responses of porcine atrioventricular heart valve anterior leaflets.
    Ross CJ; Laurence DW; Echols AL; Babu AR; Gu T; Duginski GA; Johns CH; Mullins BT; Casey KM; Laurence KA; Zhao YD; Amini R; Fung KM; Mir A; Burkhart HM; Wu Y; Holzapfel GA; Lee CH
    Acta Biomater; 2021 Nov; 135():425-440. PubMed ID: 34481053
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computational study of pulsatile blood flow in prototype vessel geometries of coronary segments.
    Chaniotis AK; Kaiktsis L; Katritsis D; Efstathopoulos E; Pantos I; Marmarellis V
    Phys Med; 2010; 26(3):140-56. PubMed ID: 20400349
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Changes in the microstructure of the human aortic adventitia under biaxial loading investigated by multi-photon microscopy.
    Pukaluk A; Wolinski H; Viertler C; Regitnig P; Holzapfel GA; Sommer G
    Acta Biomater; 2023 Apr; 161():154-169. PubMed ID: 36812954
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Considering the Influence of Coronary Motion on Artery-Specific Biomechanics Using Fluid-Structure Interaction Simulation.
    Fogell NAT; Patel M; Yang P; Ruis RM; Garcia DB; Naser J; Savvopoulos F; Davies Taylor C; Post AL; Pedrigi RM; de Silva R; Krams R
    Ann Biomed Eng; 2023 Sep; 51(9):1950-1964. PubMed ID: 37436564
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural remodeling of coronary resistance arteries: effects of age and exercise training.
    Hanna MA; Taylor CR; Chen B; La HS; Maraj JJ; Kilar CR; Behnke BJ; Delp MD; Muller-Delp JM
    J Appl Physiol (1985); 2014 Sep; 117(6):616-23. PubMed ID: 25059239
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microstructural analysis of skeletal muscle force generation during aging.
    Zhang Y; Chen JS; He Q; He X; Basava RR; Hodgson J; Sinha U; Sinha S
    Int J Numer Method Biomed Eng; 2020 Jan; 36(1):e3295. PubMed ID: 31820588
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A constitutive modeling interpretation of the relationship among carotid artery stiffness, blood pressure, and age in hypertensive subjects.
    Spronck B; Heusinkveld MH; Donders WP; de Lepper AG; Op't Roodt J; Kroon AA; Delhaas T; Reesink KD
    Am J Physiol Heart Circ Physiol; 2015 Mar; 308(6):H568-82. PubMed ID: 25539709
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Contribution of collagen, elastin, and smooth muscle to in vivo human brachial artery wall stress and elastic modulus.
    Bank AJ; Wang H; Holte JE; Mullen K; Shammas R; Kubo SH
    Circulation; 1996 Dec; 94(12):3263-70. PubMed ID: 8989139
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Origin of axial prestretch and residual stress in arteries.
    Cardamone L; Valentín A; Eberth JF; Humphrey JD
    Biomech Model Mechanobiol; 2009 Dec; 8(6):431-46. PubMed ID: 19123012
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Age related constitutive laws and stress distribution in human main coronary arteries with reference to residual strain.
    Valenta J; Vitek K; Cihak R; Konvickova S; Sochor M; Horny L
    Biomed Mater Eng; 2002; 12(2):121-34. PubMed ID: 12122236
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microstructure of early embryonic aortic arch and its reversibility following mechanically altered hemodynamic load release.
    Celik M; Goktas S; Karakaya C; Cakiroglu AI; Karahuseyinoglu S; Lashkarinia SS; Ermek E; Pekkan K
    Am J Physiol Heart Circ Physiol; 2020 May; 318(5):H1208-H1218. PubMed ID: 32243769
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biaxial deformation of collagen and elastin fibers in coronary adventitia.
    Chen H; Slipchenko MN; Liu Y; Zhao X; Cheng JX; Lanir Y; Kassab GS
    J Appl Physiol (1985); 2013 Dec; 115(11):1683-93. PubMed ID: 24092692
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.