These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 28839149)

  • 41. Constitutive modeling of mouse carotid arteries using experimentally measured microstructural parameters.
    Wan W; Dixon JB; Gleason RL
    Biophys J; 2012 Jun; 102(12):2916-25. PubMed ID: 22735542
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Biaxial elastic material properties of porcine coronary media and adventitia.
    Pandit A; Lu X; Wang C; Kassab GS
    Am J Physiol Heart Circ Physiol; 2005 Jun; 288(6):H2581-7. PubMed ID: 15792993
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Towards microstructure-informed material models for human brain tissue.
    Budday S; Sarem M; Starck L; Sommer G; Pfefferle J; Phunchago N; Kuhl E; Paulsen F; Steinmann P; Shastri VP; Holzapfel GA
    Acta Biomater; 2020 Mar; 104():53-65. PubMed ID: 31887455
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Measurements from light and polarised light microscopy of human coronary arteries fixed at distending pressure.
    Canham PB; Finlay HM; Dixon JG; Boughner DR; Chen A
    Cardiovasc Res; 1989 Nov; 23(11):973-82. PubMed ID: 2611805
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The multiscale characterization and constitutive modeling of healthy and type 2 diabetes mellitus Sprague Dawley rat skin.
    Dwivedi KK; Lakhani P; Sihota P; Tikoo K; Kumar S; Kumar N
    Acta Biomater; 2023 Mar; 158():324-346. PubMed ID: 36565785
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mechanical and structural contributions of elastin and collagen fibers to interlamellar bonding in the arterial wall.
    Wang R; Yu X; Zhang Y
    Biomech Model Mechanobiol; 2021 Feb; 20(1):93-106. PubMed ID: 32705413
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Assessment of superficial coronary vessel wall deformation and stress: validation of in silico models and human coronary arteries in vivo.
    Wu X; von Birgelen C; Li Z; Zhang S; Huang J; Liang F; Li Y; Wijns W; Tu S
    Int J Cardiovasc Imaging; 2018 Jun; 34(6):849-861. PubMed ID: 29397475
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Theoretical modeling of micro-scale biological phenomena in human coronary arteries.
    Wong K; Mazumdar J; Pincombe B; Worthley SG; Sanders P; Abbott D
    Med Biol Eng Comput; 2006 Nov; 44(11):971-82. PubMed ID: 17048027
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Three-dimensional anisotropic hyperelastic constitutive model describing the mechanical response of human and mouse cervix.
    Shi L; Hu L; Lee N; Fang S; Myers K
    Acta Biomater; 2022 Sep; 150():277-294. PubMed ID: 35931278
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Review of the Techniques Used for Investigating the Role Elastin and Collagen Play in Arterial Wall Mechanics.
    Giudici A; Wilkinson IB; Khir AW
    IEEE Rev Biomed Eng; 2021; 14():256-269. PubMed ID: 32746366
    [TBL] [Abstract][Full Text] [Related]  

  • 51. On a phenomenological model for active smooth muscle contraction.
    Schmitz A; Böl M
    J Biomech; 2011 Jul; 44(11):2090-5. PubMed ID: 21632055
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A microstructurally driven model for pulmonary artery tissue.
    Kao PH; Lammers SR; Tian L; Hunter K; Stenmark KR; Shandas R; Qi HJ
    J Biomech Eng; 2011 May; 133(5):051002. PubMed ID: 21599093
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Three-dimensional mechanical properties of porcine coronary arteries: a validated two-layer model.
    Wang C; Garcia M; Lu X; Lanir Y; Kassab GS
    Am J Physiol Heart Circ Physiol; 2006 Sep; 291(3):H1200-9. PubMed ID: 16582016
    [TBL] [Abstract][Full Text] [Related]  

  • 54. 3D Reconstruction of Coronary Artery Vascular Smooth Muscle Cells.
    Luo T; Chen H; Kassab GS
    PLoS One; 2016; 11(2):e0147272. PubMed ID: 26882342
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A generic constitutive model for the passive porcine coronary artery.
    van den Broek CN; van der Horst A; Rutten MC; van de Vosse FN
    Biomech Model Mechanobiol; 2011 Apr; 10(2):249-58. PubMed ID: 20556629
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A comprehensive study of layer-specific morphological changes in the microstructure of carotid arteries under uniaxial load.
    Krasny W; Morin C; Magoariec H; Avril S
    Acta Biomater; 2017 Jul; 57():342-351. PubMed ID: 28499632
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Artery buckling analysis using a four-fiber wall model.
    Liu Q; Wen Q; Mottahedi M; Han HC
    J Biomech; 2014 Aug; 47(11):2790-6. PubMed ID: 24972920
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Regional biomechanical characterization of human ascending aortic aneurysms: Microstructure and biaxial mechanical response.
    Cosentino F; Sherifova S; Sommer G; Raffa G; Pilato M; Pasta S; Holzapfel GA
    Acta Biomater; 2023 Oct; 169():107-117. PubMed ID: 37579911
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Resliced image space construction for coronary artery collagen fibers.
    Luo T; Chen H; Kassab GS
    PLoS One; 2017; 12(9):e0184972. PubMed ID: 28953913
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Coronary artery WSS profiling using a geometry reconstruction based on biplane angiography.
    Goubergrits L; Wellnhofer E; Kertzscher U; Affeld K; Petz C; Hege HC
    Ann Biomed Eng; 2009 Apr; 37(4):682-91. PubMed ID: 19229618
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.