BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 28839204)

  • 1. Effects of short indels on protein structure and function in human genomes.
    Lin M; Whitmire S; Chen J; Farrel A; Shi X; Guo JT
    Sci Rep; 2017 Aug; 7(1):9313. PubMed ID: 28839204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comprehensive study of small non-frameshift insertions/deletions in proteins and prediction of their phenotypic effects by a machine learning method (KD4i).
    Bermejo-Das-Neves C; Nguyen HN; Poch O; Thompson JD
    BMC Bioinformatics; 2014 Apr; 15():111. PubMed ID: 24742296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systematic analysis of short internal indels and their impact on protein folding.
    Kim R; Guo JT
    BMC Struct Biol; 2010 Aug; 10():24. PubMed ID: 20684774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SIFT Indel: predictions for the functional effects of amino acid insertions/deletions in proteins.
    Hu J; Ng PC
    PLoS One; 2013; 8(10):e77940. PubMed ID: 24194902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DDIG-in: detecting disease-causing genetic variations due to frameshifting indels and nonsense mutations employing sequence and structural properties at nucleotide and protein levels.
    Folkman L; Yang Y; Li Z; Stantic B; Sattar A; Mort M; Cooper DN; Liu Y; Zhou Y
    Bioinformatics; 2015 May; 31(10):1599-606. PubMed ID: 25573915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep sequencing of Danish Holstein dairy cattle for variant detection and insight into potential loss-of-function variants in protein coding genes.
    Das A; Panitz F; Gregersen VR; Bendixen C; Holm LE
    BMC Genomics; 2015 Dec; 16():1043. PubMed ID: 26645365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The origin, evolution, and functional impact of short insertion-deletion variants identified in 179 human genomes.
    Montgomery SB; Goode DL; Kvikstad E; Albers CA; Zhang ZD; Mu XJ; Ananda G; Howie B; Karczewski KJ; Smith KS; Anaya V; Richardson R; Davis J; ; MacArthur DG; Sidow A; Duret L; Gerstein M; Makova KD; Marchini J; McVean G; Lunter G
    Genome Res; 2013 May; 23(5):749-61. PubMed ID: 23478400
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and functional analysis of somatic coding and UTR indels in breast and lung cancer genomes.
    Chen J; Guo JT
    Sci Rep; 2021 Oct; 11(1):21178. PubMed ID: 34707120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A universal algorithm for de novo decrypting of heterozygous indel sequences: a tool for personalized medicine.
    Lam CW
    Clin Chim Acta; 2008 Mar; 389(1-2):7-13. PubMed ID: 18078814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A probabilistic method for the detection and genotyping of small indels from population-scale sequence data.
    Bansal V; Libiger O
    Bioinformatics; 2011 Aug; 27(15):2047-53. PubMed ID: 21653520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pervasive indels and their evolutionary dynamics after the fish-specific genome duplication.
    Guo B; Zou M; Wagner A
    Mol Biol Evol; 2012 Oct; 29(10):3005-22. PubMed ID: 22490820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein expansion is primarily due to indels in intrinsically disordered regions.
    Light S; Sagit R; Sachenkova O; Ekman D; Elofsson A
    Mol Biol Evol; 2013 Dec; 30(12):2645-53. PubMed ID: 24037790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discriminating between deleterious and neutral non-frameshifting indels based on protein interaction networks and hybrid properties.
    Zhang N; Huang T; Cai YD
    Mol Genet Genomics; 2015 Feb; 290(1):343-52. PubMed ID: 25248637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An integrative approach to predicting the functional effects of small indels in non-coding regions of the human genome.
    Ferlaino M; Rogers MF; Shihab HA; Mort M; Cooper DN; Gaunt TR; Campbell C
    BMC Bioinformatics; 2017 Oct; 18(1):442. PubMed ID: 28985712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection and characterization of small insertion and deletion genetic variants in modern layer chicken genomes.
    Boschiero C; Gheyas AA; Ralph HK; Eory L; Paton B; Kuo R; Fulton J; Preisinger R; Kaiser P; Burt DW
    BMC Genomics; 2015 Jul; 16():562. PubMed ID: 26227840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The distribution and mutagenesis of short coding INDELs from 1,128 whole exomes.
    Challis D; Antunes L; Garrison E; Banks E; Evani US; Muzny D; Poplin R; Gibbs RA; Marth G; Yu F
    BMC Genomics; 2015 Feb; 16(1):143. PubMed ID: 25765891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative assessments of indel annotations in healthy and cancer genomes with next-generation sequencing data.
    Chen J; Guo JT
    BMC Med Genomics; 2020 Nov; 13(1):170. PubMed ID: 33167946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contributions of substitutions and indels to the structural variations in ancient protein superfamilies.
    Zhang Z; Wang J; Gong Y; Li Y
    BMC Genomics; 2018 Oct; 19(1):771. PubMed ID: 30355304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long indels are disordered: a study of disorder and indels in homologous eukaryotic proteins.
    Light S; Sagit R; Ekman D; Elofsson A
    Biochim Biophys Acta; 2013 May; 1834(5):890-7. PubMed ID: 23333420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human-specific insertions and deletions inferred from mammalian genome sequences.
    Chen FC; Chen CJ; Li WH; Chuang TJ
    Genome Res; 2007 Jan; 17(1):16-22. PubMed ID: 17095709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.