BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 28839373)

  • 1. Comparative Analysis of Transcriptomes of Macrophage Revealing the Mechanism of the Immunoregulatory Activities of a Novel Polysaccharide Isolated from
    Ding X; Zhu H; Hou Y; Hou W; Zhang N; Fu L
    Pharmacogn Mag; 2017; 13(51):463-471. PubMed ID: 28839373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative analysis of macrophage transcriptomes reveals a key mechanism of the immunomodulatory activity of Tricholoma matsutake polysaccharide.
    Ding X; Li J; Hou Y; Hou W
    Oncol Rep; 2016 Jul; 36(1):503-13. PubMed ID: 27221808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect on macrophage proliferation of a novel polysaccharide from
    Hou Y; Wang M; Zhao D; Liu L; Ding X; Hou W
    Oncol Lett; 2019 Feb; 17(2):2507-2515. PubMed ID: 30719119
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure elucidation and bioactivities of a new polysaccharide from Xiaojin Boletus speciosus Frost.
    Zhu H; Ding X; Hou Y; Li Y; Wang M
    Int J Biol Macromol; 2019 Apr; 126():697-716. PubMed ID: 30590151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pharmacological evaluation for anticancer and immune activities of a novel polysaccharide isolated from Boletus speciosus Frost.
    Hou Y; Ding X; Hou W; Song B; Wang T; Wang F; Li J; Zeng Y; Zhong J; Xu T; Zhu H
    Mol Med Rep; 2014 Apr; 9(4):1337-44. PubMed ID: 24566673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure elucidation, proliferation effect on macrophage and its mechanism of a new heteropolysaccharide from Lactarius deliciosus Gray.
    Hou Y; Liu L; Ding X; Zhao D; Hou W
    Carbohydr Polym; 2016 Nov; 152():648-657. PubMed ID: 27516315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNA-Seq analysis of differentially expressed genes relevant to innate and adaptive immunity in cecropin P1 transgenic rainbow trout (Oncorhynchus mykiss).
    Han YC; Lin CM; Chen TT
    BMC Genomics; 2018 Oct; 19(1):760. PubMed ID: 30340506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Whole-transcriptome analysis of differentially expressed genes in the ray florets and disc florets of Chrysanthemum morifolium.
    Liu H; Sun M; Du D; Pan H; Cheng T; Wang J; Zhang Q; Gao Y
    BMC Genomics; 2016 May; 17():398. PubMed ID: 27225275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptome analysis reveals the molecular mechanism of hepatic fat metabolism disorder caused by Muscovy duck reovirus infection.
    Wang Q; Liu M; Xu L; Wu Y; Huang Y
    Avian Pathol; 2018 Apr; 47(2):127-139. PubMed ID: 28911249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of the Transcriptome of the Ovine Mammary Gland in Lactating and Non-lactating Small-Tailed Han Sheep.
    Wang J; Zhou H; Hickford JGH; Hao Z; Shen J; Luo Y; Hu J; Liu X; Li S
    Front Genet; 2020; 11():472. PubMed ID: 32508880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptome analysis of differentially expressed genes involved in innate immunity following Bacillus thuringiensis challenge in Bombyx mori larvae.
    Wu G; Yi Y
    Mol Immunol; 2018 Nov; 103():220-228. PubMed ID: 30316186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differing molecular response of young and advanced maternal age human oocytes to IVM.
    Reyes JM; Silva E; Chitwood JL; Schoolcraft WB; Krisher RL; Ross PJ
    Hum Reprod; 2017 Nov; 32(11):2199-2208. PubMed ID: 29025019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure identification, antitumor activity and mechanisms of a novel polysaccharide from
    Dong M; Hou Y; Ding X
    Oncol Lett; 2020 Sep; 20(3):2169-2182. PubMed ID: 32782534
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Zhang J; Li X; Lu F; Wang S; An Y; Su X; Li X; Ma L; Han G
    Front Plant Sci; 2017; 8():594. PubMed ID: 28484475
    [No Abstract]   [Full Text] [Related]  

  • 15. Bioinformatics prediction and experimental verification of key biomarkers for diabetic kidney disease based on transcriptome sequencing in mice.
    Zhao J; He K; Du H; Wei G; Wen Y; Wang J; Zhou X; Wang J
    PeerJ; 2022; 10():e13932. PubMed ID: 36157062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative profiling of hepatopancreas transcriptomes in satiated and starving Pomacea canaliculata.
    Yang L; Cheng TY; Zhao FY
    BMC Genet; 2017 Feb; 18(1):18. PubMed ID: 28228093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of candidate biomarkers and pathways associated with SCLC by bioinformatics analysis.
    Wen P; Chidanguro T; Shi Z; Gu H; Wang N; Wang T; Li Y; Gao J
    Mol Med Rep; 2018 Aug; 18(2):1538-1550. PubMed ID: 29845250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-throughput transcriptome sequencing analysis provides preliminary insights into the biotransformation mechanism of Rhodopseudomonas palustris treated with alpha-rhamnetin-3-rhamnoside.
    Bi L; Guan CJ; Yang GE; Yang F; Yan HY; Li QS
    Microbiol Res; 2016 Apr; 185():1-12. PubMed ID: 26946373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of key pathways and genes in colorectal cancer using bioinformatics analysis.
    Liang B; Li C; Zhao J
    Med Oncol; 2016 Oct; 33(10):111. PubMed ID: 27581154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of differentially expressed genes in longissimus dorsi muscle of Diannan small ears, Wujin and landrace pigs using RNA-seq.
    Li Q; Hao M; Zhu J; Yi L; Cheng W; Xie Y; Zhao S
    Front Vet Sci; 2023; 10():1296208. PubMed ID: 38249550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.