These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 28840175)

  • 21. RESPIRATORY PATHWAYS IN THE MYCOPLASMA. II. PATHWAY OF ELECTRON TRANSPORT DURING OXIDATION OF REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE BY MYCOPLASMA HOMINIS.
    VANDEMARK PJ; SMITH PF
    J Bacteriol; 1964 Jul; 88(1):122-9. PubMed ID: 14197876
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Extraction and Quantitation of Nicotinamide Adenine Dinucleotide Redox Cofactors.
    Lu W; Wang L; Chen L; Hui S; Rabinowitz JD
    Antioxid Redox Signal; 2018 Jan; 28(3):167-179. PubMed ID: 28497978
    [TBL] [Abstract][Full Text] [Related]  

  • 23. RNA polymerase mutants that destabilize RNA polymerase-promoter complexes alter NTP-sensing by rrn P1 promoters.
    Bartlett MS; Gaal T; Ross W; Gourse RL
    J Mol Biol; 1998 Jun; 279(2):331-45. PubMed ID: 9642041
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Studies on the effects of coenzyme A-SH: acetyl coenzyme A, nicotinamide adenine dinucleotide: reduced nicotinamide adenine dinucleotide, and adenosine diphosphate: adenosine triphosphate ratios on the interconversion of active and inactive pyruvate dehydrogenase in isolated rat heart mitochondria.
    Hansford RG
    J Biol Chem; 1976 Sep; 251(18):5483-9. PubMed ID: 184082
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metabolism and biochemical properties of nicotinamide adenine dinucleotide (NAD) analogs, nicotinamide guanine dinucleotide (NGD) and nicotinamide hypoxanthine dinucleotide (NHD).
    Yaku K; Okabe K; Gulshan M; Takatsu K; Okamoto H; Nakagawa T
    Sci Rep; 2019 Sep; 9(1):13102. PubMed ID: 31511627
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Promoter-sequence determinants and structural basis of primer-dependent transcription initiation in
    Skalenko KS; Li L; Zhang Y; Vvedenskaya IO; Winkelman JT; Cope AL; Taylor DM; Shah P; Ebright RH; Kinney JB; Zhang Y; Nickels BE
    Proc Natl Acad Sci U S A; 2021 Jul; 118(27):. PubMed ID: 34187896
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analysis of Bacterial Transcription by "Massively Systematic Transcript End Readout," MASTER.
    Vvedenskaya IO; Goldman SR; Nickels BE
    Methods Enzymol; 2018; 612():269-302. PubMed ID: 30502946
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of initiating nucleoside triphosphate concentrations in the regulation of influenza virus replication and transcription.
    Vreede FT; Gifford H; Brownlee GG
    J Virol; 2008 Jul; 82(14):6902-10. PubMed ID: 18463155
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Substrate selection by RNA polymerase from E. coli. The role of ribose and 5'-triphosphate fragments, and nucleotides interaction.
    Szafrański P; Smagowicz WJ; Wierzchowski KL
    Acta Biochim Pol; 1985; 32(4):329-49. PubMed ID: 3938589
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Promoter-dependent transcription by RNA polymerase II using immobilized enzyme complexes.
    Arias JA; Dynan WS
    J Biol Chem; 1989 Feb; 264(6):3223-9. PubMed ID: 2464595
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An Escherichia coli RNA polymerase defective in transcription due to its overproduction of abortive initiation products.
    Jin DJ; Turnbough CL
    J Mol Biol; 1994 Feb; 236(1):72-80. PubMed ID: 7508986
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interactions of the yeast mitochondrial RNA polymerase with the +1 and +2 promoter bases dictate transcription initiation efficiency.
    Deshpande AP; Patel SS
    Nucleic Acids Res; 2014 Oct; 42(18):11721-32. PubMed ID: 25249624
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Extensive 5'-surveillance guards against non-canonical NAD-caps of nuclear mRNAs in yeast.
    Zhang Y; Kuster D; Schmidt T; Kirrmaier D; Nübel G; Ibberson D; Benes V; Hombauer H; Knop M; Jäschke A
    Nat Commun; 2020 Nov; 11(1):5508. PubMed ID: 33139726
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In vitro studies of transcript initiation by Escherichia coli RNA polymerase. 1. RNA chain initiation, abortive initiation, and promoter escape at three bacteriophage promoters.
    Hsu LM; Vo NV; Kane CM; Chamberlin MJ
    Biochemistry; 2003 Apr; 42(13):3777-86. PubMed ID: 12667069
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Purification and characterization of the two 6-phosphogluconate dehydrogenase species from Pseudomonas multivorans.
    Lee YN; Lessie TG
    J Bacteriol; 1974 Dec; 120(3):1043-57. PubMed ID: 4154932
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Kinetic mechanism of transcription initiation by bacteriophage T7 RNA polymerase.
    Jia Y; Patel SS
    Biochemistry; 1997 Apr; 36(14):4223-32. PubMed ID: 9100017
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Eukaryotic RNA 5'-End NAD
    Kiledjian M
    Trends Cell Biol; 2018 Jun; 28(6):454-464. PubMed ID: 29544676
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Abortive products as initiating nucleotides during transcription by T7 RNA polymerase.
    Moroney SE; Piccirilli JA
    Biochemistry; 1991 Oct; 30(42):10343-9. PubMed ID: 1718417
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stability of ternary transcription complexes of vaccinia virus RNA polymerase at promoter-proximal positions.
    Hagler J; Shuman S
    J Biol Chem; 1992 Apr; 267(11):7644-54. PubMed ID: 1559999
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural basis of transcription initiation by bacterial RNA polymerase holoenzyme.
    Basu RS; Warner BA; Molodtsov V; Pupov D; Esyunina D; Fernández-Tornero C; Kulbachinskiy A; Murakami KS
    J Biol Chem; 2014 Aug; 289(35):24549-59. PubMed ID: 24973216
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.