These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 28840258)

  • 1. Individualised variable-interval risk-based screening for sight-threatening diabetic retinopathy: the Liverpool Risk Calculation Engine.
    Eleuteri A; Fisher AC; Broadbent DM; García-Fiñana M; Cheyne CP; Wang A; Stratton IM; Gabbay M; Seddon D; Harding SP;
    Diabetologia; 2017 Nov; 60(11):2174-2182. PubMed ID: 28840258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Safety and cost-effectiveness of individualised screening for diabetic retinopathy: the ISDR open-label, equivalence RCT.
    Broadbent DM; Wang A; Cheyne CP; James M; Lathe J; Stratton IM; Roberts J; Moitt T; Vora JP; Gabbay M; García-Fiñana M; Harding SP;
    Diabetologia; 2021 Jan; 64(1):56-69. PubMed ID: 33146763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Individualised screening for diabetic retinopathy: the ISDR study-rationale, design and methodology for a randomised controlled trial comparing annual and individualised risk-based variable-interval screening.
    Broadbent DM; Sampson CJ; Wang A; Howard L; Williams AE; Howlin SU; Appelbe D; Moitt T; Cheyne CP; Rahni MM; Kelly J; Collins J; García-Fiñana M; Stratton IM; James M; Harding SP;
    BMJ Open; 2019 Jun; 9(6):e025788. PubMed ID: 31213445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Incidence of sight-threatening diabetic retinopathy in an established urban screening programme: An 11-year cohort study.
    Cheyne CP; Burgess PI; Broadbent DM; García-Fiñana M; Stratton IM; Criddle T; Wang A; Alshukri A; Rahni MM; Vazquez-Arango P; Vora JP; Harding SP;
    Diabet Med; 2021 Sep; 38(9):e14583. PubMed ID: 33830513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of personalised risk-based screening schedules to optimise workload and sojourn time in screening programmes for diabetic retinopathy: A retrospective cohort study.
    Ochs A; McGurnaghan S; Black MW; Leese GP; Philip S; Sattar N; Styles C; Wild SH; McKeigue PM; Colhoun HM;
    PLoS Med; 2019 Oct; 16(10):e1002945. PubMed ID: 31622334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Incidence of sight-threatening diabetic retinopathy in people with Type 2 diabetes mellitus and numbers needed to screen: a systematic review.
    Groeneveld Y; Tavenier D; Blom JW; Polak BCP
    Diabet Med; 2019 Oct; 36(10):1199-1208. PubMed ID: 30677170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a cost-effectiveness model for optimisation of the screening interval in diabetic retinopathy screening.
    Scanlon PH; Aldington SJ; Leal J; Luengo-Fernandez R; Oke J; Sivaprasad S; Gazis A; Stratton IM
    Health Technol Assess; 2015 Sep; 19(74):1-116. PubMed ID: 26384314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prognostic factors for the development and progression of proliferative diabetic retinopathy in people with diabetic retinopathy.
    Perais J; Agarwal R; Evans JR; Loveman E; Colquitt JL; Owens D; Hogg RE; Lawrenson JG; Takwoingi Y; Lois N
    Cochrane Database Syst Rev; 2023 Feb; 2(2):CD013775. PubMed ID: 36815723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Artificial intelligence using deep learning to screen for referable and vision-threatening diabetic retinopathy in Africa: a clinical validation study.
    Bellemo V; Lim ZW; Lim G; Nguyen QD; Xie Y; Yip MYT; Hamzah H; Ho J; Lee XQ; Hsu W; Lee ML; Musonda L; Chandran M; Chipalo-Mutati G; Muma M; Tan GSW; Sivaprasad S; Menon G; Wong TY; Ting DSW
    Lancet Digit Health; 2019 May; 1(1):e35-e44. PubMed ID: 33323239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Screening Intervals for Diabetic Retinopathy and Implications for Care.
    Scanlon PH
    Curr Diab Rep; 2017 Sep; 17(10):96. PubMed ID: 28875458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Individual risk assessment and information technology to optimise screening frequency for diabetic retinopathy.
    Aspelund T; Thornórisdóttir O; Olafsdottir E; Gudmundsdottir A; Einarsdóttir AB; Mehlsen J; Einarsson S; Pálsson O; Einarsson G; Bek T; Stefánsson E
    Diabetologia; 2011 Oct; 54(10):2525-32. PubMed ID: 21792613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The use of statistical methodology to determine the accuracy of grading within a diabetic retinopathy screening programme.
    Oke JL; Stratton IM; Aldington SJ; Stevens RJ; Scanlon PH
    Diabet Med; 2016 Jul; 33(7):896-903. PubMed ID: 26666463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diabetic retinopathy at diagnosis of type 2 diabetes in Scotland.
    Looker HC; Nyangoma SO; Cromie D; Olson JA; Leese GP; Black M; Doig J; Lee N; Lindsay RS; McKnight JA; Morris AD; Philip S; Sattar N; Wild SH; Colhoun HM; ;
    Diabetologia; 2012 Sep; 55(9):2335-42. PubMed ID: 22688348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trends in yield and effects of screening intervals during 17 years of a large UK community-based diabetic retinopathy screening programme.
    Misra A; Bachmann MO; Greenwood RH; Jenkins C; Shaw A; Barakat O; Flatman M; Jones CD
    Diabet Med; 2009 Oct; 26(10):1040-7. PubMed ID: 19900237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling the cost-effectiveness of adopting risk-stratified approaches to extended screening intervals in the national diabetic retinopathy screening programme in Scotland.
    Scotland G; McKeigue P; Philip S; Leese GP; Olson JA; Looker HC; Colhoun HM; Javanbakht M
    Diabet Med; 2016 Jul; 33(7):886-95. PubMed ID: 27040994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous subcutaneous insulin infusion therapy is associated with reduced retinopathy progression compared with multiple daily injections of insulin.
    Reid LJ; Gibb FW; Colhoun H; Wild SH; Strachan MWJ; Madill K; Dhillon B; Forbes S
    Diabetologia; 2021 Aug; 64(8):1725-1736. PubMed ID: 33966091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. THEIA™ development, and testing of artificial intelligence-based primary triage of diabetic retinopathy screening images in New Zealand.
    Vaghefi E; Yang S; Xie L; Hill S; Schmiedel O; Murphy R; Squirrell D
    Diabet Med; 2021 Apr; 38(4):e14386. PubMed ID: 32794618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An observational study to assess if automated diabetic retinopathy image assessment software can replace one or more steps of manual imaging grading and to determine their cost-effectiveness.
    Tufail A; Kapetanakis VV; Salas-Vega S; Egan C; Rudisill C; Owen CG; Lee A; Louw V; Anderson J; Liew G; Bolter L; Bailey C; Sadda S; Taylor P; Rudnicka AR
    Health Technol Assess; 2016 Dec; 20(92):1-72. PubMed ID: 27981917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of independent risk factors for the development of diabetic retinopathy requiring treatment.
    Mehlsen J; Erlandsen M; Poulsen PL; Bek T
    Acta Ophthalmol; 2011 Sep; 89(6):515-21. PubMed ID: 19912134
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.