These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 28840428)

  • 21. Using Diurnal Temperature Signals to Infer Vertical Groundwater-Surface Water Exchange.
    Irvine DJ; Briggs MA; Lautz LK; Gordon RP; McKenzie JM; Cartwright I
    Ground Water; 2017 Jan; 55(1):10-26. PubMed ID: 27696430
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Controls on catchment-scale patterns of phosphorus in soil, streambed sediment, and stream water.
    van der Perk M; Owens PN; Deeks LK; Rawlins BG; Haygarth PM; Beven KJ
    J Environ Qual; 2007; 36(3):694-708. PubMed ID: 17412905
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prediction of fish and sediment mercury in streams using landscape variables and historical mining.
    Alpers CN; Yee JL; Ackerman JT; Orlando JL; Slotton DG; Marvin-DiPasquale MC
    Sci Total Environ; 2016 Nov; 571():364-79. PubMed ID: 27378154
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of an automated sensor for in-situ continuous monitoring of streambed sediment height of a waterway.
    Matos T; Rocha JL; Faria CL; Martins MS; Henriques R; Goncalves LM
    Sci Total Environ; 2022 Feb; 808():152164. PubMed ID: 34875333
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Application of new point measurement device to quantify groundwater-surface water interactions.
    Cremeans MM; Devlin JF; McKnight US; Bjerg PL
    J Contam Hydrol; 2018 Apr; 211():85-93. PubMed ID: 29605159
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Simulation of fluid, heat transport to estimate desert stream infiltration.
    Kulongoski JT; Izbicki JA
    Ground Water; 2008; 46(3):462-74. PubMed ID: 18194325
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assessing the chemical contamination dynamics in a mixed land use stream system.
    Sonne AT; McKnight US; Rønde V; Bjerg PL
    Water Res; 2017 Nov; 125():141-151. PubMed ID: 28843938
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Depth and vertical hydrodynamics constrain the size structure of a lowland streambed community.
    Peralta-Maraver I; Robertson AL; Perkins DM
    Biol Lett; 2019 Jul; 15(7):20190317. PubMed ID: 31288689
    [TBL] [Abstract][Full Text] [Related]  

  • 29. New methodology to investigate potential contaminant mass fluxes at the stream-aquifer interface by combining integral pumping tests and streambed temperatures.
    Kalbus E; Schmidt C; Bayer-Raich M; Leschik S; Reinstorf F; Balcke GU; Schirmer M
    Environ Pollut; 2007 Aug; 148(3):808-16. PubMed ID: 17399875
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Using detailed monitoring data to simulate spatial sediment loading in a watershed.
    Mukundan R; Pierson DC; Schneiderman EM; Zion MS
    Environ Monit Assess; 2015 Aug; 187(8):532. PubMed ID: 26215828
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterizing spatial structure of sediment E. coli populations to inform sampling design.
    Piorkowski GS; Jamieson RC; Hansen LT; Bezanson GS; Yost CK
    Environ Monit Assess; 2014 Jan; 186(1):277-91. PubMed ID: 23959344
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Persistence of
    Afolabi EO; Quilliam RS; Oliver DM
    Int J Environ Res Public Health; 2023 Apr; 20(7):. PubMed ID: 37047990
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Use of fallout radionuclides ((7)Be, (210)Pb) to estimate resuspension of Escherichia coli from streambed sediments during floods in a tropical montane catchment.
    Ribolzi O; Evrard O; Huon S; Rochelle-Newall E; Henri-des-Tureaux T; Silvera N; Thammahacksac C; Sengtaheuanghoung O
    Environ Sci Pollut Res Int; 2016 Feb; 23(4):3427-35. PubMed ID: 26490918
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Risk assessment of watershed erosion at Naesung Stream, South Korea.
    Ji U; Velleux M; Julien PY; Hwang M
    J Environ Manage; 2014 Apr; 136():16-26. PubMed ID: 24548823
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Potential for 4-n-nonylphenol biodegradation in stream sediments.
    Bradley PM; Barber LB; Kolpin DW; McMahon PB; Chapelle FH
    Environ Toxicol Chem; 2008 Feb; 27(2):260-5. PubMed ID: 18348644
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biogeochemical environments of streambed-sediment pore waters with and without arsenic enrichment in a sedimentary rock terrain, New Jersey Piedmont, USA.
    Mumford AC; Barringer JL; Reilly PA; Eberl DD; Blum AE; Young LY
    Sci Total Environ; 2015 Feb; 505():1350-60. PubMed ID: 25130624
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Flood-induced transport of PAHs from streambed coal tar deposits.
    Vulava VM; Vaughn DS; McKay LD; Driese SG; Cooper LW; Menn FM; Levine NS; Sayler GS
    Sci Total Environ; 2017 Jan; 575():247-257. PubMed ID: 27744153
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A PCE groundwater plume discharging to a river: influence of the streambed and near-river zone on contaminant distributions.
    Conant B; Cherry JA; Gillham RW
    J Contam Hydrol; 2004 Sep; 73(1-4):249-79. PubMed ID: 15336797
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Applications of turbidity monitoring to forest management in California.
    Harris RR; Sullivan K; Cafferata PH; Munn JR; Faucher KM
    Environ Manage; 2007 Sep; 40(3):531-43. PubMed ID: 17562100
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biostabilization and erodibility of cohesive sediment deposits in wildfire-affected streams.
    Stone M; Emelko MB; Droppo IG; Silins U
    Water Res; 2011 Jan; 45(2):521-34. PubMed ID: 20970822
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.