These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

526 related articles for article (PubMed ID: 28840540)

  • 1. A more tubulocentric view of diabetic kidney disease.
    Zeni L; Norden AGW; Cancarini G; Unwin RJ
    J Nephrol; 2017 Dec; 30(6):701-717. PubMed ID: 28840540
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sodium/glucose cotransporter 2 inhibitors and prevention of diabetic nephropathy: targeting the renal tubule in diabetes.
    De Nicola L; Gabbai FB; Liberti ME; Sagliocca A; Conte G; Minutolo R
    Am J Kidney Dis; 2014 Jul; 64(1):16-24. PubMed ID: 24673844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SGLT2 Inhibitors and the Diabetic Kidney.
    Fioretto P; Zambon A; Rossato M; Busetto L; Vettor R
    Diabetes Care; 2016 Aug; 39 Suppl 2():S165-71. PubMed ID: 27440829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The roles of sodium-glucose cotransporter 2 inhibitors in preventing kidney injury in diabetes.
    Jaikumkao K; Pongchaidecha A; Chatsudthipong V; Chattipakorn SC; Chattipakorn N; Lungkaphin A
    Biomed Pharmacother; 2017 Oct; 94():176-187. PubMed ID: 28759755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SGLT2 inhibitor empagliflozin reduces renal growth and albuminuria in proportion to hyperglycemia and prevents glomerular hyperfiltration in diabetic Akita mice.
    Vallon V; Gerasimova M; Rose MA; Masuda T; Satriano J; Mayoux E; Koepsell H; Thomson SC; Rieg T
    Am J Physiol Renal Physiol; 2014 Jan; 306(2):F194-204. PubMed ID: 24226524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Primary proximal tubule hyperreabsorption and impaired tubular transport counterregulation determine glomerular hyperfiltration in diabetes: a modeling analysis.
    Hallow KM; Gebremichael Y; Helmlinger G; Vallon V
    Am J Physiol Renal Physiol; 2017 May; 312(5):F819-F835. PubMed ID: 28148531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sodium-glucose cotransporter-2 inhibition and the potential for renal protection in diabetic nephropathy.
    Škrtić M; Cherney DZ
    Curr Opin Nephrol Hypertens; 2015 Jan; 24(1):96-103. PubMed ID: 25470017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The tubular hypothesis of nephron filtration and diabetic kidney disease.
    Vallon V; Thomson SC
    Nat Rev Nephrol; 2020 Jun; 16(6):317-336. PubMed ID: 32152499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sodium-glucose cotransporter 2 inhibition attenuates protein overload in renal proximal tubule via suppression of megalin O-GlcNacylation in progressive diabetic nephropathy.
    Otomo H; Nara M; Kato S; Shimizu T; Suganuma Y; Sato T; Morii T; Yamada Y; Fujita H
    Metabolism; 2020 Dec; 113():154405. PubMed ID: 33069809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sodium glucose cotransporter 2 inhibition in the diabetic kidney: an update.
    Novikov A; Vallon V
    Curr Opin Nephrol Hypertens; 2016 Jan; 25(1):50-8. PubMed ID: 26575393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lessons learned from studies of the natural history of diabetic nephropathy in young type 1 diabetic patients.
    Steinke JM; Mauer M;
    Pediatr Endocrinol Rev; 2008 Aug; 5 Suppl 4():958-63. PubMed ID: 18806710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SGLT2 Inhibition for the Prevention and Treatment of Diabetic Kidney Disease: A Review.
    Alicic RZ; Johnson EJ; Tuttle KR
    Am J Kidney Dis; 2018 Aug; 72(2):267-277. PubMed ID: 29866460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of SGLT2 co-transporter by dapagliflozin ameliorates tubular proteinuria and tubule-interstitial injury at the early stage of diabetic kidney disease.
    Farias RS; Silva-Aguiar RP; Teixeira DE; Gomes CP; Pinheiro AAS; Peruchetti DB; Caruso-Neves C
    Eur J Pharmacol; 2023 Mar; 942():175521. PubMed ID: 36681317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of renal tubule-specific knockdown of the Na
    Onishi A; Fu Y; Darshi M; Crespo-Masip M; Huang W; Song P; Patel R; Kim YC; Nespoux J; Freeman B; Soleimani M; Thomson S; Sharma K; Vallon V
    Am J Physiol Renal Physiol; 2019 Aug; 317(2):F419-F434. PubMed ID: 31166707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Knockout of Na
    Song P; Huang W; Onishi A; Patel R; Kim YC; van Ginkel C; Fu Y; Freeman B; Koepsell H; Thomson S; Liu R; Vallon V
    Am J Physiol Renal Physiol; 2019 Jul; 317(1):F207-F217. PubMed ID: 31091127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlation between serum carnosinase concentration and renal damage in diabetic nephropathy patients.
    Zhou Z; Liu XQ; Zhang SQ; Qi XM; Zhang Q; Yard B; Wu YG
    Amino Acids; 2021 May; 53(5):687-700. PubMed ID: 33811534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SGLT2 Inhibitors: Glucotoxicity and Tumorigenesis Downstream the Renal Proximal Tubule?
    Bertinat R; Nualart F; Yáñez AJ
    J Cell Physiol; 2016 Aug; 231(8):1635-7. PubMed ID: 26661279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Do Endocannabinoids Regulate Glucose Reabsorption in the Kidney?
    Hinden L; Tam J
    Nephron; 2019; 143(1):24-27. PubMed ID: 30636250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of kidney proximal tubular glucose reabsorption does not prevent against diabetic nephropathy in type 1 diabetic eNOS knockout mice.
    Gangadharan Komala M; Gross S; Mudaliar H; Huang C; Pegg K; Mather A; Shen S; Pollock CA; Panchapakesan U
    PLoS One; 2014; 9(11):e108994. PubMed ID: 25369239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Renal Effects of Sodium-Glucose Co-Transporter Inhibitors.
    Thomson SC; Vallon V
    Am J Cardiol; 2019 Dec; 124 Suppl 1(Suppl 1):S28-S35. PubMed ID: 31741437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.