These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 28840929)
1. Diversity and controllability of particle distribution under coupling vibration and airflow. Li L; Wu P; Zhang S; Wang L Soft Matter; 2017 Oct; 13(39):7034-7045. PubMed ID: 28840929 [TBL] [Abstract][Full Text] [Related]
2. Convecting particle diffusion in a binary particle system under vertical vibration. Hu K; Xie ZA; Wu P; Sun J; Li L; Jia C; Zhang S; Liu C; Wang L Soft Matter; 2014 Jun; 10(24):4348-59. PubMed ID: 24796705 [TBL] [Abstract][Full Text] [Related]
3. Separation patterns between Brazilian nut and reversed Brazilian nut of a binary granular system. Xie ZA; Wu P; Zhang SP; Chen S; Jia C; Liu CP; Wang L Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):061302. PubMed ID: 23005081 [TBL] [Abstract][Full Text] [Related]
4. Reversing the Brazil-nut effect: competition between percolation and condensation. Breu AP; Ensner HM; Kruelle CA; Rehberg I Phys Rev Lett; 2003 Jan; 90(1):014302. PubMed ID: 12570618 [TBL] [Abstract][Full Text] [Related]
5. Motion behaviour of ellipsoidal granular system under vertical vibration and airflow. Jiang M; Wu P; Liu H; Li L; Chen S; Zhang S; Wang L Soft Matter; 2020 Oct; 16(41):9559-9567. PubMed ID: 32969453 [TBL] [Abstract][Full Text] [Related]
6. Granular core phenomenon induced by convection in a vertically vibrated cylindrical container. Sun J; Liu C; Wu P; Xie ZA; Hu K; Wang L Phys Rev E; 2016 Sep; 94(3-1):032906. PubMed ID: 27739818 [TBL] [Abstract][Full Text] [Related]
7. Characteristics of Vibrating Fluidization and Transportation for Al Ogata K; Harada T; Kawahara H; Tokumaru K; Abe R; Mitani E; Mitani K Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329644 [TBL] [Abstract][Full Text] [Related]
8. Brazil nut effect and excluded volume attraction in vibrofluidized granular mixtures. Bose M; Kumar UU; Nott PR; Kumaran V Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 1):021305. PubMed ID: 16196554 [TBL] [Abstract][Full Text] [Related]
9. Development and application of an aerosol screening model for size-resolved urban aerosols. Stanier CO; Lee SR; Res Rep Health Eff Inst; 2014 Jun; (179):3-79. PubMed ID: 25145039 [TBL] [Abstract][Full Text] [Related]
10. Fluidization of a vertically vibrated two-dimensional hard sphere packing: a granular meltdown. Götzendorfer A; Tai CH; Kruelle CA; Rehberg I; Hsiau SS Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jul; 74(1 Pt 1):011304. PubMed ID: 16907086 [TBL] [Abstract][Full Text] [Related]
11. Granular species segregation under vertical tapping: effects of size, density, friction, and shaking amplitude. Ciamarra MP; De Vizia MD; Fierro A; Tarzia M; Coniglio A; Nicodemi M Phys Rev Lett; 2006 Feb; 96(5):058001. PubMed ID: 16486992 [TBL] [Abstract][Full Text] [Related]
12. Granular friction, Coulomb failure, and the fluid-solid transition for horizontally shaken granular materials. Metcalfe G; Tennakoon SG; Kondic L; Schaeffer DG; Behringer RP Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Mar; 65(3 Pt 1):031302. PubMed ID: 11909041 [TBL] [Abstract][Full Text] [Related]
13. Separation of fine binary mixtures under vibration in a gas-solid fluidized bed with dense medium. Jin H; Tong Z; Schlaberg HI; Zhang J Waste Manag Res; 2005 Dec; 23(6):534-40. PubMed ID: 16379122 [TBL] [Abstract][Full Text] [Related]
14. Horizontal segregation in a vertically vibrated binary granular system. Shi X; Miao G; Zhang H Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):061306. PubMed ID: 20365167 [TBL] [Abstract][Full Text] [Related]
15. Mechanisms in the size segregation of a binary granular mixture. Schröter M; Ulrich S; Kreft J; Swift JB; Swinney HL Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jul; 74(1 Pt 1):011307. PubMed ID: 16907089 [TBL] [Abstract][Full Text] [Related]
16. Segregation in mixtures of granular chains and spherical grains under vertical vibration. Yuan X; Zheng N; Shi Q; Sun G; Li L Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042203. PubMed ID: 23679403 [TBL] [Abstract][Full Text] [Related]
17. Scaling behavior in the convection-driven Brazil nut effect. Hejmady P; Bandyopadhyay R; Sabhapandit S; Dhar A Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):050301. PubMed ID: 23214729 [TBL] [Abstract][Full Text] [Related]
18. Vortices in vibrated granular rods. Blair DL; Neicu T; Kudrolli A Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Mar; 67(3 Pt 1):031303. PubMed ID: 12689060 [TBL] [Abstract][Full Text] [Related]
19. Resonant phenomena and mechanism in vibrated granular systems. Cai H; Miao G Phys Rev E; 2020 Mar; 101(3-1):032902. PubMed ID: 32289933 [TBL] [Abstract][Full Text] [Related]
20. Air-driven Brazil nut effect. Naylor MA; Swift MR; King PJ Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 1):012301. PubMed ID: 12935182 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]