These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 28841277)

  • 1. Large-Area Fabrication of Droplet Pancake Bouncing Surface and Control of Bouncing State.
    Song J; Gao M; Zhao C; Lu Y; Huang L; Liu X; Carmalt CJ; Deng X; Parkin IP
    ACS Nano; 2017 Sep; 11(9):9259-9267. PubMed ID: 28841277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robust Superhydrophobic Conical Pillars from Syringe Needle Shape to Straight Conical Pillar Shape for Droplet Pancake Bouncing.
    Song J; Huang L; Zhao C; Wu S; Liu H; Lu Y; Deng X; Carmalt CJ; Parkin IP; Sun Y
    ACS Appl Mater Interfaces; 2019 Dec; 11(48):45345-45353. PubMed ID: 31651139
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large-area fabrication of superhydrophobic micro-conical pillar arrays on various metallic substrates.
    Pan W; Wu S; Huang L; Song J
    Nanoscale; 2021 Sep; 13(33):14023-14034. PubMed ID: 34477683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical and Experimental Studies on the Controllable Pancake Bouncing Behavior of Droplets.
    Wu H; Jiang K; Xu Z; Yu S; Peng X; Zhang Z; Bai H; Liu A; Chai G
    Langmuir; 2019 Dec; 35(52):17000-17008. PubMed ID: 31786923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Explosive Pancake Bouncing on Hot Superhydrophilic Surfaces.
    Liu M; Du H; Cheng Y; Zheng H; Jin Y; To S; Wang S; Wang Z
    ACS Appl Mater Interfaces; 2021 May; 13(20):24321-24328. PubMed ID: 33998790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bouncing Regimes of Supercooled Water Droplets Impacting Superhydrophobic Surfaces with Controlled Temperature and Humidity.
    Guo C; Liu L; Yang R; Lu J; Liu S
    Langmuir; 2023 Jul; 39(29):10199-10208. PubMed ID: 37436938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-Pressure Pancake Bouncing on Superhydrophobic Surfaces.
    Fu Z; Jin H; Zhang J; Xue T; Guo Q; Yao G; Gao H; Wang Z; Wen D
    Small; 2024 Mar; ():e2310200. PubMed ID: 38497491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pancake bouncing: simulations and theory and experimental verification.
    Moevius L; Liu Y; Wang Z; Yeomans JM
    Langmuir; 2014 Nov; 30(43):13021-32. PubMed ID: 25286146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superhydrophobic porous networks for enhanced droplet shedding.
    Liu Y; Wang Z
    Sci Rep; 2016 Sep; 6():33817. PubMed ID: 27644452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical and analytical study of the impinging and bouncing phenomena of droplets on superhydrophobic surfaces with microtextured structures.
    Quan Y; Zhang LZ
    Langmuir; 2014 Oct; 30(39):11640-9. PubMed ID: 25203603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable Multimodal Drop Bouncing Dynamics and Anti-Icing Performance of a Magnetically Responsive Hair Array.
    Lee SH; Seong M; Kwak MK; Ko H; Kang M; Park HW; Kang SM; Jeong HE
    ACS Nano; 2018 Nov; 12(11):10693-10702. PubMed ID: 30248255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D-Printed Surface Architecture Enhancing Superhydrophobicity and Viscous Droplet Repellency.
    Graeber G; Martin Kieliger OB; Schutzius TM; Poulikakos D
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):43275-43281. PubMed ID: 30452216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pancake Jumping of Sessile Droplets.
    Qian C; Zhou F; Wang T; Li Q; Hu D; Chen X; Wang Z
    Adv Sci (Weinh); 2022 Mar; 9(7):e2103834. PubMed ID: 35032105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bouncing Dynamics of Impact Droplets on the Biomimetic Plane and Convex Superhydrophobic Surfaces with Dual-Level and Three-Level Structures.
    Lian Z; Xu J; Ren W; Wang Z; Yu H
    Nanomaterials (Basel); 2019 Oct; 9(11):. PubMed ID: 31731520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of geometrical parameters on rebound of impacting droplets on leaky superhydrophobic meshes.
    Kumar A; Tripathy A; Nam Y; Lee C; Sen P
    Soft Matter; 2018 Feb; 14(9):1571-1580. PubMed ID: 29355280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-Adaptive Droplet Bouncing on a Dual Gradient Surface.
    Wu C; Qin X; Zheng H; Xu Z; Song Y; Jin Y; Zhang H; Mo J; Li W; Lu J; Wang Z
    Small; 2023 Oct; ():e2304635. PubMed ID: 37786271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pancake bouncing on superhydrophobic surfaces.
    Liu Y; Moevius L; Xu X; Qian T; Yeomans JM; Wang Z
    Nat Phys; 2014 Jul; 10(7):515-519. PubMed ID: 28553363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of surface texturing on superoleophobicity, contact angle hysteresis, and "robustness".
    Zhao H; Park KC; Law KY
    Langmuir; 2012 Oct; 28(42):14925-34. PubMed ID: 22992132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light-Caused Droplet Bouncing from a Cavity Trap-Assisted Superhydrophobic Surface.
    Li W; Lei Y; Chen R; Zhu X; Liao Q; Ye D; Li D
    Langmuir; 2020 Sep; 36(37):11068-11078. PubMed ID: 32847362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Droplet Impact on Anisotropic Superhydrophobic Surfaces.
    Guo C; Zhao D; Sun Y; Wang M; Liu Y
    Langmuir; 2018 Mar; 34(11):3533-3540. PubMed ID: 29436832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.