These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 28841292)

  • 1. Remote Control of Multimodal Nanoscale Ligand Oscillations Regulates Stem Cell Adhesion and Differentiation.
    Kang H; Wong DSH; Yan X; Jung HJ; Kim S; Lin S; Wei K; Li G; Dravid VP; Bian L
    ACS Nano; 2017 Oct; 11(10):9636-9649. PubMed ID: 28841292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Remote Manipulation of Ligand Nano-Oscillations Regulates Adhesion and Polarization of Macrophages in Vivo.
    Kang H; Kim S; Wong DSH; Jung HJ; Lin S; Zou K; Li R; Li G; Dravid VP; Bian L
    Nano Lett; 2017 Oct; 17(10):6415-6427. PubMed ID: 28875707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetically Tuning Tether Mobility of Integrin Ligand Regulates Adhesion, Spreading, and Differentiation of Stem Cells.
    Wong DS; Li J; Yan X; Wang B; Li R; Zhang L; Bian L
    Nano Lett; 2017 Mar; 17(3):1685-1695. PubMed ID: 28233497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Remote Control of Heterodimeric Magnetic Nanoswitch Regulates the Adhesion and Differentiation of Stem Cells.
    Kang H; Jung HJ; Wong DSH; Kim SK; Lin S; Chan KF; Zhang L; Li G; Dravid VP; Bian L
    J Am Chem Soc; 2018 May; 140(18):5909-5913. PubMed ID: 29681155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Remote Control of Time-Regulated Stretching of Ligand-Presenting Nanocoils In Situ Regulates the Cyclic Adhesion and Differentiation of Stem Cells.
    Min S; Ko MJ; Jung HJ; Kim W; Han SB; Kim Y; Bae G; Lee S; Thangam R; Choi H; Li N; Shin JE; Jeon YS; Park HS; Kim YJ; Sukumar UK; Song JJ; Park SK; Yu SH; Kang YC; Lee KB; Wei Q; Kim DH; Han SM; Paulmurugan R; Kim YK; Kang H
    Adv Mater; 2021 Mar; 33(11):e2008353. PubMed ID: 33527502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substrate Coupling Strength of Integrin-Binding Ligands Modulates Adhesion, Spreading, and Differentiation of Human Mesenchymal Stem Cells.
    Choi CK; Xu YJ; Wang B; Zhu M; Zhang L; Bian L
    Nano Lett; 2015 Oct; 15(10):6592-600. PubMed ID: 26390262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An In Situ Reversible Heterodimeric Nanoswitch Controlled by Metal-Ion-Ligand Coordination Regulates the Mechanosensing and Differentiation of Stem Cells.
    Kang H; Zhang K; Jung HJ; Yang B; Chen X; Pan Q; Li R; Xu X; Li G; Dravid VP; Bian L
    Adv Mater; 2018 Nov; 30(44):e1803591. PubMed ID: 30277606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of Mesoporous Silica Nanoparticle-Based Films with Tunable Arginine-Glycine-Aspartate Peptide Global Density and Clustering Levels to Study Stem Cell Adhesion and Differentiation.
    Zhang X; Karagöz Z; Swapnasrita S; Habibovic P; Carlier A; van Rijt S
    ACS Appl Mater Interfaces; 2023 Aug; 15(32):38171-38184. PubMed ID: 37527490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Independent Tuning of Nano-Ligand Frequency and Sequences Regulates the Adhesion and Differentiation of Stem Cells.
    Min S; Jeon YS; Jung HJ; Khatua C; Li N; Bae G; Choi H; Hong H; Shin JE; Ko MJ; Ko HS; Jun I; Fu HE; Kim SH; Thangam R; Song JJ; Dravid VP; Kim YK; Kang H
    Adv Mater; 2020 Oct; 32(40):e2004300. PubMed ID: 32820574
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    Khatua C; Min S; Jung HJ; Shin JE; Li N; Jun I; Liu HW; Bae G; Choi H; Ko MJ; Jeon YS; Kim YJ; Lee J; Ko M; Shim G; Shin H; Lee S; Chung S; Kim YK; Song JJ; Dravid VP; Kang H
    Nano Lett; 2020 Jun; 20(6):4188-4196. PubMed ID: 32406688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetic Manipulation of Reversible Nanocaging Controls In Vivo Adhesion and Polarization of Macrophages.
    Kang H; Jung HJ; Kim SK; Wong DSH; Lin S; Li G; Dravid VP; Bian L
    ACS Nano; 2018 Jun; 12(6):5978-5994. PubMed ID: 29767957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell adhesion and motility depend on nanoscale RGD clustering.
    Maheshwari G; Brown G; Lauffenburger DA; Wells A; Griffith LG
    J Cell Sci; 2000 May; 113 ( Pt 10)():1677-86. PubMed ID: 10769199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Manipulating Nanoparticle Aggregates Regulates Receptor-Ligand Binding in Macrophages.
    Kim Y; Jung HJ; Lee Y; Koo S; Thangam R; Jang WY; Kim SY; Park S; Lee S; Bae G; Patel KD; Wei Q; Lee KB; Paulmurugan R; Jeong WK; Hyeon T; Kim D; Kang H
    J Am Chem Soc; 2022 Apr; 144(13):5769-5783. PubMed ID: 35275625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic Control and Real-Time Monitoring of Stem Cell Differentiation by the Ligand Nanoassembly.
    Lee S; Kim MS; Patel KD; Choi H; Thangam R; Yoon J; Koo TM; Jung HJ; Min S; Bae G; Kim Y; Han SB; Kang N; Kim M; Li N; Fu HE; Jeon YS; Song JJ; Kim DH; Park S; Choi JW; Paulmurugan R; Kang YC; Lee H; Wei Q; Dravid VP; Lee KB; Kim YK; Kang H
    Small; 2021 Oct; 17(41):e2102892. PubMed ID: 34515417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oscillating Magnetic Field Regulates Cell Adherence and Endothelialization Based on Magnetic Nanoparticle-Modified Bacterial Cellulose.
    Zhang L; Wei F; Bai Q; Song D; Zheng Z; Wang Y; Liu X; Abdulrahman AA; Bian Y; Xu X; Chen C; Zhang H; Sun D
    ACS Appl Mater Interfaces; 2020 Nov; 12(47):52467-52478. PubMed ID: 33170636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoparticle tension probes patterned at the nanoscale: impact of integrin clustering on force transmission.
    Liu Y; Medda R; Liu Z; Galior K; Yehl K; Spatz JP; Cavalcanti-Adam EA; Salaita K
    Nano Lett; 2014 Oct; 14(10):5539-46. PubMed ID: 25238229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface guidance of stem cell behavior: Chemically tailored co-presentation of integrin-binding peptides stimulates osteogenic differentiation in vitro and bone formation in vivo.
    Fraioli R; Dashnyam K; Kim JH; Perez RA; Kim HW; Gil J; Ginebra MP; Manero JM; Mas-Moruno C
    Acta Biomater; 2016 Oct; 43():269-281. PubMed ID: 27481289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell shape and the presentation of adhesion ligands guide smooth muscle myogenesis.
    Zhang D; Sun MB; Lee J; Abdeen AA; Kilian KA
    J Biomed Mater Res A; 2016 May; 104(5):1212-20. PubMed ID: 26799164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Soft Polymeric Matrix as a Macroscopic Cage for Magnetically Modulating Reversible Nanoscale Ligand Presentation.
    Wong SHD; Wong WKR; Lai CHN; Oh J; Li Z; Chen X; Yuan W; Bian L
    Nano Lett; 2020 May; 20(5):3207-3216. PubMed ID: 32289227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of unlocking RGD-motifs in collagen I on pre-osteoblast adhesion and differentiation.
    Taubenberger AV; Woodruff MA; Bai H; Muller DJ; Hutmacher DW
    Biomaterials; 2010 Apr; 31(10):2827-35. PubMed ID: 20053443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.