These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
86 related articles for article (PubMed ID: 28841356)
1. Removal of phosphate from electrocoagulation post-treatment phosphate reduction using Octolig®. Martin DF; Gilmore B J Environ Sci Health A Tox Hazard Subst Environ Eng; 2017 Sep; 52(11):1046-1047. PubMed ID: 28841356 [TBL] [Abstract][Full Text] [Related]
2. Efforts to remove aqueous lithium ion using Octolig® and methylated derivatives. Martin DF; Bisht KS J Environ Sci Health A Tox Hazard Subst Environ Eng; 2018 Aug; 53(10):946-949. PubMed ID: 29775126 [TBL] [Abstract][Full Text] [Related]
3. Comparison of anion removal capacities of Octolig and Cuprilig. Martin DF; Franz DM J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(14):1619-24. PubMed ID: 22077670 [TBL] [Abstract][Full Text] [Related]
4. Removal of BPA model compounds and related substances by means of column chromatography using Octolig®. Alessio RJ; Li X; Martin DF J Environ Sci Health A Tox Hazard Subst Environ Eng; 2012; 47(14):2198-204. PubMed ID: 22934990 [TBL] [Abstract][Full Text] [Related]
5. Removal of synthetic food dyes in aqueous solution by Octolig. Martin DF; Alessio RJ; McCane CH J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(5):495-500. PubMed ID: 23383634 [TBL] [Abstract][Full Text] [Related]
6. Comparative ease of separation of mixtures of selected nuisance anions (nitrate, nitrite, sulfate, phosphate) using Octolig. Stull FW; Martin DF J Environ Sci Health A Tox Hazard Subst Environ Eng; 2009 Dec; 44(14):1545-50. PubMed ID: 20183512 [TBL] [Abstract][Full Text] [Related]
7. Efficacy of removal of a popular NSAID from aqueous solutions with metalloligs. Martin DF; Hurst J; Mayers J; McKeithan CF J Environ Sci Health A Tox Hazard Subst Environ Eng; 2019; 54(8):782-785. PubMed ID: 31046561 [TBL] [Abstract][Full Text] [Related]
8. Lead removal by ThioOctolig. Martin DF; Bisht KS J Environ Sci Health A Tox Hazard Subst Environ Eng; 2021; 56(2):157-160. PubMed ID: 33284726 [TBL] [Abstract][Full Text] [Related]
9. Removal of pain-relieving drugs from aqueous solutions using Octolig and selected metalloligs. Martin DF; Sehgal T; Word TA J Environ Sci Health A Tox Hazard Subst Environ Eng; 2015; 50(8):788-93. PubMed ID: 26030684 [TBL] [Abstract][Full Text] [Related]
10. Removal of a common antibiotic (Amoxicillin) from different aqueous systems using Octolig®. Martin DF; Acosta K; Mckeithan CR J Environ Sci Health A Tox Hazard Subst Environ Eng; 2016 Nov; 51(13):1107-10. PubMed ID: 27420342 [TBL] [Abstract][Full Text] [Related]
11. Removal of selected NSAIDs (nonsteroidal anti-inflammatory drugs) in aqueous samples by Octolig®. Martin DF; Martin JM; Word TA J Environ Sci Health A Tox Hazard Subst Environ Eng; 2016 Jan; 51(2):186-191. PubMed ID: 26606390 [TBL] [Abstract][Full Text] [Related]
12. Efficacy of Octolig chromatography as a means of removal of aqueous antibiotics given to premature babies. Martin DF; Kaiser T; Mayers J J Environ Sci Health A Tox Hazard Subst Environ Eng; 2019; 54(10):1019-1022. PubMed ID: 31074317 [TBL] [Abstract][Full Text] [Related]
13. Pyridinium-functionalized magnetic mesoporous silica nanoparticles as a reusable adsorbent for phosphate removal from aqueous solution. Ma F; Du H; Li R; Zhang Z Water Sci Technol; 2016; 74(5):1127-35. PubMed ID: 27642832 [TBL] [Abstract][Full Text] [Related]
14. Performance evaluation of a continuous bipolar electrocoagulation/electrooxidation-electroflotation (ECEO-EF) reactor designed for simultaneous removal of ammonia and phosphate from wastewater effluent. Mahvi AH; Ebrahimi SJ; Mesdaghinia A; Gharibi H; Sowlat MH J Hazard Mater; 2011 Sep; 192(3):1267-74. PubMed ID: 21741172 [TBL] [Abstract][Full Text] [Related]
15. The effect of silica coating on the resin bond to the intaglio surface of Procera AllCeram restorations. Blatz MB; Sadan A; Blatz U Quintessence Int; 2003; 34(7):542-7. PubMed ID: 12946074 [TBL] [Abstract][Full Text] [Related]
16. Enhanced removal of aqueous BPA model compounds using Metalloligs. Franz DM; Martin DF J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(3):307-12. PubMed ID: 24279622 [TBL] [Abstract][Full Text] [Related]
17. A comparative study of the treatment techniques for controlling THM-precursors in raw and drinking water. Gawandi VB; Sawant AD J Environ Sci Eng; 2007 Oct; 49(4):283-6. PubMed ID: 18476376 [TBL] [Abstract][Full Text] [Related]
18. Effects of water chemistry on arsenic removal from drinking water by electrocoagulation. Wan W; Pepping TJ; Banerji T; Chaudhari S; Giammar DE Water Res; 2011 Jan; 45(1):384-92. PubMed ID: 20800261 [TBL] [Abstract][Full Text] [Related]
19. Removal of hydrated silica, fluoride and arsenic from groundwater by electrocoagulation using a continuous reactor with a twelve-cell stack. Rosales M; Coreño O; Nava JL Chemosphere; 2018 Nov; 211():149-155. PubMed ID: 30071426 [TBL] [Abstract][Full Text] [Related]
20. Preparation of silica-supported porous sorbent for heavy metal ions removal in wastewater treatment by organic-inorganic hybridization combined with sucrose and polyethylene glycol imprinting. Li F; Du P; Chen W; Zhang S Anal Chim Acta; 2007 Mar; 585(2):211-8. PubMed ID: 17386667 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]