These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 28841448)

  • 1. Pre-crash scenarios at road junctions: A clustering method for car crash data.
    Nitsche P; Thomas P; Stuetz R; Welsh R
    Accid Anal Prev; 2017 Oct; 107():137-151. PubMed ID: 28841448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pre-crash scenarios for safety testing of autonomous vehicles: A clustering method for in-depth crash data.
    Huang H; Huang X; Zhou R; Zhou H; Lee JJ; Cen X
    Accid Anal Prev; 2024 Aug; 203():107616. PubMed ID: 38723335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Autonomous driving testing scenario generation based on in-depth vehicle-to-powered two-wheeler crash data in China.
    Wang X; Peng Y; Xu T; Xu Q; Wu X; Xiang G; Yi S; Wang H
    Accid Anal Prev; 2022 Oct; 176():106812. PubMed ID: 36054982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How would autonomous vehicles behave in real-world crash scenarios?
    Zhou R; Zhang G; Huang H; Wei Z; Zhou H; Jin J; Chang F; Chen J
    Accid Anal Prev; 2024 Jul; 202():107572. PubMed ID: 38657314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The potential of clustering methods to define intersection test scenarios: Assessing real-life performance of AEB.
    Sander U; Lubbe N
    Accid Anal Prev; 2018 Apr; 113():1-11. PubMed ID: 29355748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Road safety from the perspective of driver gender and age as related to the injury crash frequency and road scenario.
    Russo F; Biancardo SA; Dell'Acqua G
    Traffic Inj Prev; 2014; 15(1):25-33. PubMed ID: 24279963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A clustering approach to developing car-to-two-wheeler test scenarios for the assessment of Automated Emergency Braking in China using in-depth Chinese crash data.
    Sui B; Lubbe N; Bärgman J
    Accid Anal Prev; 2019 Nov; 132():105242. PubMed ID: 31446097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of functional scenarios for intersection collisions.
    Bangert LG; Lubash T; Scanlon JM; Kusano KD; Riexinger LE
    Accid Anal Prev; 2023 Dec; 193():107326. PubMed ID: 37793217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identifying typical pre-crash scenarios based on in-depth crash data with deep embedded clustering for autonomous vehicle safety testing.
    Zhou R; Huang H; Lee J; Huang X; Chen J; Zhou H
    Accid Anal Prev; 2023 Oct; 191():107218. PubMed ID: 37467602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Creating pedestrian crash scenarios in a driving simulator environment.
    Chrysler ST; Ahmad O; Schwarz CW
    Traffic Inj Prev; 2015; 16 Suppl 1():S12-7. PubMed ID: 26027964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of car crashes resulting in fatal and serious injuries to analyze a safe road transport system model and to identify system weaknesses.
    Stigson H; Hill J
    Traffic Inj Prev; 2009 Oct; 10(5):441-50. PubMed ID: 19746308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparing car drivers' and motorcyclists' opinions about junction crashes.
    Robbins CJ; Allen HA; Chapman P
    Accid Anal Prev; 2018 Aug; 117():304-317. PubMed ID: 29753219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating automated emergency braking performance in simulated car-to-two-wheeler crashes in China: A comparison between C-NCAP tests and in-depth crash data.
    Sui B; Lubbe N; Bärgman J
    Accid Anal Prev; 2021 Sep; 159():106229. PubMed ID: 34225169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comprehensive target populations for current active safety systems using national crash databases.
    Kusano KD; Gabler HC
    Traffic Inj Prev; 2014; 15(7):753-61. PubMed ID: 24433115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-agent traffic simulations to estimate the impact of automated technologies on safety.
    Kitajima S; Shimono K; Tajima J; Antona-Makoshi J; Uchida N
    Traffic Inj Prev; 2019; 20(sup1):S58-S64. PubMed ID: 31381431
    [No Abstract]   [Full Text] [Related]  

  • 16. Driving risk assessment using near-crash database through data mining of tree-based model.
    Wang J; Zheng Y; Li X; Yu C; Kodaka K; Li K
    Accid Anal Prev; 2015 Nov; 84():54-64. PubMed ID: 26319604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using micro-simulation to investigate the safety impacts of transit design alternatives at signalized intersections.
    Li L; Persaud B; Shalaby A
    Accid Anal Prev; 2017 Mar; 100():123-132. PubMed ID: 28130982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Definition of run-off-road crash clusters-For safety benefit estimation and driver assistance development.
    Nilsson D; Lindman M; Victor T; Dozza M
    Accid Anal Prev; 2018 Apr; 113():97-105. PubMed ID: 29407673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pre-licensed driving experience and car crash involvement during the learner and restricted, licence stages of graduated driver licensing: Findings from the New Zealand drivers study.
    Begg DJ; Langley JD; Brookland RL; Ameratunga S; Gulliver P
    Accid Anal Prev; 2014 Jan; 62():153-60. PubMed ID: 24161622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LAVIA--an evaluation of the potential safety benefits of the French intelligent speed adaptation project.
    Driscoll R; Page Y; Lassarre S; Ehrlich J
    Annu Proc Assoc Adv Automot Med; 2007; 51():485-505. PubMed ID: 18184509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.