BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 28841513)

  • 41. Scaffold identification of a new class of potent and selective BCRP inhibitors.
    Marighetti F; Steggemann K; Karbaum M; Wiese M
    ChemMedChem; 2015 Apr; 10(4):742-51. PubMed ID: 25735648
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Synthesis of 5-Hydroxy-3',4',7-trimethoxyflavone and Related Compounds and Elucidation of Their Reversal Effects on BCRP/ABCG2-Mediated Anticancer Drug Resistance.
    Tsunekawa R; Katayama K; Hanaya K; Higashibayashi S; Sugimoto Y; Sugai T
    Chembiochem; 2019 Jan; 20(2):210-220. PubMed ID: 30187992
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Benzoyl indoles with metabolic stability as reversal agents for ABCG2-mediated multidrug resistance.
    Cai CY; Zhai H; Lei ZN; Tan CP; Chen BL; Du ZY; Wang JQ; Zhang YK; Wang YJ; Gupta P; Wang B; Chen ZS
    Eur J Med Chem; 2019 Oct; 179():849-862. PubMed ID: 31302589
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mechanistic basis of breast cancer resistance protein inhibition by new indeno[1,2-b]indoles.
    Kita DH; Guragossian N; Zattoni IF; Moure VR; Rego FGM; Lusvarghi S; Moulenat T; Belhani B; Picheth G; Bouacida S; Bouaziz Z; Marminon C; Berredjem M; Jose J; Gonçalves MB; Ambudkar SV; Valdameri G; Le Borgne M
    Sci Rep; 2021 Jan; 11(1):1788. PubMed ID: 33469044
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Synthesis and ABCG2 inhibitory evaluation of 5-N-acetylardeemin derivatives.
    Hayashi D; Tsukioka N; Inoue Y; Matsubayashi Y; Iizuka T; Higuchi K; Ikegami Y; Kawasaki T
    Bioorg Med Chem; 2015 May; 23(9):2010-23. PubMed ID: 25835358
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Synthesis and biological assessment of new pyrimidopyrimidines as inhibitors of breast cancer resistance protein (ABCG2).
    Dakhlaoui I; Vahdati S; Maalej E; Chabchoub F; Wiese M; Marco-Contelles J; Ismaili L
    Bioorg Chem; 2021 Nov; 116():105326. PubMed ID: 34536930
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Solid phase synthesis of tariquidar-related modulators of ABC transporters preferring breast cancer resistance protein (ABCG2).
    Puentes CO; Höcherl P; Kühnle M; Bauer S; Bürger K; Bernhardt G; Buschauer A; König B
    Bioorg Med Chem Lett; 2011 Jun; 21(12):3654-7. PubMed ID: 21570282
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Uncompetitive nanomolar dimeric indenoindole inhibitors of the human breast cancer resistance pump ABCG2.
    Guragossian N; Belhani B; Moreno A; Nunes MT; Gonzalez-Lobato L; Marminon C; Berthier L; Rocio Andrade Pires AD; Özvegy-Laczka C; Sarkadi B; Terreux R; Bouaziz Z; Berredjem M; Jose J; Di Pietro A; Falson P; Le Borgne M
    Eur J Med Chem; 2021 Feb; 211():113017. PubMed ID: 33223263
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Optimization of the chromone scaffold through QSAR and docking studies: Identification of potent inhibitors of ABCG2.
    Roussel E; Tran-Nguyen VK; Bouhedjar K; Dems MA; Belaidi A; Matougui B; Peres B; Azioune A; Renaudet O; Falson P; Boumendjel A
    Eur J Med Chem; 2019 Dec; 184():111772. PubMed ID: 31630055
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Targeting the multidrug ABCG2 transporter with flavonoidic inhibitors: in vitro optimization and in vivo validation.
    Boumendjel A; Macalou S; Valdameri G; Pozza A; Gauthier C; Arnaud O; Nicolle E; Magnard S; Falson P; Terreux R; Carrupt PA; Payen L; Di Pietro A
    Curr Med Chem; 2011; 18(22):3387-401. PubMed ID: 21728961
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Metabolism of KO143, an ABCG2 inhibitor.
    Liu K; Zhu J; Huang Y; Li C; Lu J; Sachar M; Li S; Ma X
    Drug Metab Pharmacokinet; 2017 Aug; 32(4):193-200. PubMed ID: 28619281
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Characterization of 3-methoxy flavones for their interaction with ABCG2 as suggested by ATPase activity.
    Gallus J; Juvale K; Wiese M
    Biochim Biophys Acta; 2014 Nov; 1838(11):2929-38. PubMed ID: 25128152
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Structure of the human multidrug transporter ABCG2.
    Taylor NMI; Manolaridis I; Jackson SM; Kowal J; Stahlberg H; Locher KP
    Nature; 2017 Jun; 546(7659):504-509. PubMed ID: 28554189
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Quinoline carboxamide-type ABCG2 modulators: indole and quinoline moieties as anilide replacements.
    Bauer S; Ochoa-Puentes C; Sun Q; Bause M; Bernhardt G; König B; Buschauer A
    ChemMedChem; 2013 Nov; 8(11):1773-8. PubMed ID: 24039190
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Functional characterization of rainbow trout (Oncorhynchus mykiss) Abcg2a (Bcrp) transporter.
    Zaja R; Popović M; Lončar J; Smital T
    Comp Biochem Physiol C Toxicol Pharmacol; 2016 Dec; 190():15-23. PubMed ID: 27475308
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Water-soluble inhibitors of ABCG2 (BCRP) - A fragment-based and computational approach.
    Antoni F; Wifling D; Bernhardt G
    Eur J Med Chem; 2021 Jan; 210():112958. PubMed ID: 33199153
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Structural basis of small-molecule inhibition of human multidrug transporter ABCG2.
    Jackson SM; Manolaridis I; Kowal J; Zechner M; Taylor NMI; Bause M; Bauer S; Bartholomaeus R; Bernhardt G; Koenig B; Buschauer A; Stahlberg H; Altmann KH; Locher KP
    Nat Struct Mol Biol; 2018 Apr; 25(4):333-340. PubMed ID: 29610494
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Investigation of chalcones as selective inhibitors of the breast cancer resistance protein: critical role of methoxylation in both inhibition potency and cytotoxicity.
    Valdameri G; Gauthier C; Terreux R; Kachadourian R; Day BJ; Winnischofer SM; Rocha ME; Frachet V; Ronot X; Di Pietro A; Boumendjel A
    J Med Chem; 2012 Apr; 55(7):3193-200. PubMed ID: 22449016
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Tivantinib, A c-Met Inhibitor in Clinical Trials, Is Susceptible to ABCG2-Mediated Drug Resistance.
    Wu ZX; Yang Y; Teng QX; Wang JQ; Lei ZN; Wang JQ; Lusvarghi S; Ambudkar SV; Yang DH; Chen ZS
    Cancers (Basel); 2020 Jan; 12(1):. PubMed ID: 31940916
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Scaffold fragmentation and substructure hopping reveal potential, robustness, and limits of computer-aided pattern analysis (C@PA).
    Namasivayam V; Silbermann K; Pahnke J; Wiese M; Stefan SM
    Comput Struct Biotechnol J; 2021; 19():3269-3283. PubMed ID: 34141145
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.