BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 28841545)

  • 1. A novel strategy to enhance interfacial adhesion in fiber-reinforced calcium phosphate cement.
    Gallinetti S; Mestres G; Canal C; Persson C; Ginebra MP
    J Mech Behav Biomed Mater; 2017 Nov; 75():495-503. PubMed ID: 28841545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interfacial characterization of poly (vinyl alcohol) fibers embedded in a calcium phosphate cement matrix: An experimental and numerical investigation.
    Paknahad A; Petre DG; Leeuwenburgh SCG; Sluys LJ
    Acta Biomater; 2019 Sep; 96():582-593. PubMed ID: 31260819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced mechanical properties of a novel, injectable, fiber-reinforced brushite cement.
    Maenz S; Kunisch E; Mühlstädt M; Böhm A; Kopsch V; Bossert J; Kinne RW; Jandt KD
    J Mech Behav Biomed Mater; 2014 Nov; 39():328-38. PubMed ID: 25171749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Micro- and macromechanical characterization of the influence of surface-modification of poly(vinyl alcohol) fibers on the reinforcement of calcium phosphate cements.
    Kucko NW; Petre DG; de Ruiter M; Herber RP; Leeuwenburgh SCG
    J Mech Behav Biomed Mater; 2020 Sep; 109():103776. PubMed ID: 32543387
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of oxygen plasma treatment on interfacial shear strength and post-peak residual strength of a PLGA fiber-reinforced brushite cement.
    Maenz S; Hennig M; Mühlstädt M; Kunisch E; Bungartz M; Brinkmann O; Bossert J; Kinne RW; Jandt KD
    J Mech Behav Biomed Mater; 2016 Apr; 57():347-58. PubMed ID: 26875148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface functionalization of polylactic acid fibers with alendronate groups does not improve the mechanical properties of fiber-reinforced calcium phosphate cements.
    Petre DG; Kucko NW; Abbadessa A; Vermonden T; Polini A; Leeuwenburgh SCG
    J Mech Behav Biomed Mater; 2019 Feb; 90():472-483. PubMed ID: 30448561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium phosphate cement reinforced with poly (vinyl alcohol) fibers: An experimental and numerical failure analysis.
    Paknahad A; Goudarzi M; Kucko NW; Leeuwenburgh SCG; Sluys LJ
    Acta Biomater; 2021 Jan; 119():458-471. PubMed ID: 33164819
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fiber reinforced calcium phosphate cements -- on the way to degradable load bearing bone substitutes?
    Krüger R; Groll J
    Biomaterials; 2012 Sep; 33(25):5887-900. PubMed ID: 22632767
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Osteoblastic induction on calcium phosphate cement-chitosan constructs for bone tissue engineering.
    Weir MD; Xu HH
    J Biomed Mater Res A; 2010 Jul; 94(1):223-33. PubMed ID: 20166217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical and biocompatible influences of chitosan fiber and gelatin on calcium phosphate cement.
    Pan Z; Jiang P; Fan Q; Ma B; Cai H
    J Biomed Mater Res B Appl Biomater; 2007 Jul; 82(1):246-52. PubMed ID: 17183561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reinforcement of a new calcium phosphate cement with RGD-chitosan-fiber.
    Wu TY; Zhou ZB; He ZW; Ren WP; Yu XW; Huang Y
    J Biomed Mater Res A; 2014 Jan; 102(1):68-75. PubMed ID: 23606446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro biocompatibility of chitosan/hyaluronic acid-containing calcium phosphate bone cements.
    Hesaraki S; Nezafati N
    Bioprocess Biosyst Eng; 2014 Aug; 37(8):1507-16. PubMed ID: 24399509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synergistic reinforcement of in situ hardening calcium phosphate composite scaffold for bone tissue engineering.
    Xu HH; Quinn JB; Takagi S; Chow LC
    Biomaterials; 2004 Mar; 25(6):1029-37. PubMed ID: 14615168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of polymeric additives on the cohesion and mechanical properties of calcium phosphate cements.
    An J; Wolke JG; Jansen JA; Leeuwenburgh SC
    J Mater Sci Mater Med; 2016 Mar; 27(3):58. PubMed ID: 26787490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strong, macroporous, and in situ-setting calcium phosphate cement-layered structures.
    Xu HH; Burguera EF; Carey LE
    Biomaterials; 2007 Sep; 28(26):3786-96. PubMed ID: 17574665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bone repair in radii and tibias of rabbits with phosphorylated chitosan reinforced calcium phosphate cements.
    Wang X; Ma J; Wang Y; He B
    Biomaterials; 2002 Nov; 23(21):4167-76. PubMed ID: 12194519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of adding resorbable chitosan microspheres to calcium phosphate cements for bone regeneration.
    Meng D; Dong L; Wen Y; Xie Q
    Mater Sci Eng C Mater Biol Appl; 2015 Feb; 47():266-72. PubMed ID: 25492197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-setting collagen-calcium phosphate bone cement: mechanical and cellular properties.
    Moreau JL; Weir MD; Xu HH
    J Biomed Mater Res A; 2009 Nov; 91(2):605-13. PubMed ID: 18985758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Mechanical Reinforcement Strategy of Calcium Phosphate Cements by Loading Polymers].
    Lin S; Qu S; Xue J; Lin C; Weng J
    Zhongguo Yi Liao Qi Xie Za Zhi; 2018 May; 42(3):198-201. PubMed ID: 29885128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physical and mechanical properties of PMMA bone cement reinforced with nano-sized titania fibers.
    Khaled SM; Charpentier PA; Rizkalla AS
    J Biomater Appl; 2011 Feb; 25(6):515-37. PubMed ID: 20207779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.