These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 28841645)
41. Fluvial response to climate variations and anthropogenic perturbations for the Ebro River, Spain in the last 4,000 years. Xing F; Kettner AJ; Ashton A; Giosan L; Ibáñez C; Kaplan JO Sci Total Environ; 2014 Mar; 473-474():20-31. PubMed ID: 24361444 [TBL] [Abstract][Full Text] [Related]
42. [Spatiotemporal variation of water source supply service in Three Rivers Source Area of China based on InVEST model]. Pan T; Wu SH; Dai EF; Liu YJ Ying Yong Sheng Tai Xue Bao; 2013 Jan; 24(1):183-9. PubMed ID: 23718008 [TBL] [Abstract][Full Text] [Related]
43. Land-use conversion and changing soil carbon stocks in China's 'Grain-for-Green' Program: a synthesis. Deng L; Liu GB; Shangguan ZP Glob Chang Biol; 2014 Nov; 20(11):3544-56. PubMed ID: 24357470 [TBL] [Abstract][Full Text] [Related]
44. Eco-environmental evolution, control, and adjustment for Aibi Lake catchment. Qian Y; Wu Z; Zhang L; Zhou H; Wu S; Yang Q Environ Manage; 2005 Oct; 36(4):506-17. PubMed ID: 16151653 [TBL] [Abstract][Full Text] [Related]
45. Simulating Crop Evapotranspiration Response under Different Planting Scenarios by Modified SWAT Model in an Irrigation District, Northwest China. Liu X; Wang S; Xue H; Singh VP PLoS One; 2015; 10(10):e0139839. PubMed ID: 26439928 [TBL] [Abstract][Full Text] [Related]
46. Diagnosis of GLDAS LSM based aridity index and dryland identification. Ghazanfari S; Pande S; Hashemy M; Sonneveld B J Environ Manage; 2013 Apr; 119():162-72. PubMed ID: 23500019 [TBL] [Abstract][Full Text] [Related]
47. The Influences of Drought and Land-Cover Conversion on Inter-Annual Variation of NPP in the Three-North Shelterbelt Program Zone of China Based on MODIS Data. Peng D; Wu C; Zhang B; Huete A; Zhang X; Sun R; Lei L; Huang W; Liu L; Liu X; Li J; Luo S; Fang B PLoS One; 2016; 11(6):e0158173. PubMed ID: 27348303 [TBL] [Abstract][Full Text] [Related]
48. Spatial-temporal variations of terrestrial evapotranspiration across China from 2000 to 2019. Fu J; Gong Y; Zheng W; Zou J; Zhang M; Zhang Z; Qin J; Liu J; Quan B Sci Total Environ; 2022 Jun; 825():153951. PubMed ID: 35192820 [TBL] [Abstract][Full Text] [Related]
49. Simulating effects of fire disturbance and climate change on boreal forest productivity and evapotranspiration. Kang S; Kimball JS; Running SW Sci Total Environ; 2006 Jun; 362(1-3):85-102. PubMed ID: 16364407 [TBL] [Abstract][Full Text] [Related]
50. Evaluating the impact of climate change on groundwater resources in a small Mediterranean watershed. Ertürk A; Ekdal A; Gürel M; Karakaya N; Guzel C; Gönenç E Sci Total Environ; 2014 Nov; 499():437-47. PubMed ID: 25064798 [TBL] [Abstract][Full Text] [Related]
51. Integrating land use and climate change scenarios and models into assessment of forested watershed services in Southern Thailand. Trisurat Y; Eawpanich P; Kalliola R Environ Res; 2016 May; 147():611-20. PubMed ID: 26915561 [TBL] [Abstract][Full Text] [Related]
52. Changes in Remotely Sensed Vegetation Growth Trend in the Heihe Basin of Arid Northwestern China. Sun W; Song H; Yao X; Ishidaira H; Xu Z PLoS One; 2015; 10(8):e0135376. PubMed ID: 26284656 [TBL] [Abstract][Full Text] [Related]
53. Quantifying land change dynamics, resilience and feedback: A comparative analysis of the lake Chad basin in Africa and Aral Sea basin in Central Asia. Edwin IE; Chukwuka O; Ochege FU; Ling Q; Chen B; Nzabarinda V; Ajaero C; Hamdi R; Luo G J Environ Manage; 2024 Jun; 361():121218. PubMed ID: 38805961 [TBL] [Abstract][Full Text] [Related]
54. Separating the effects of climate change and human activity on water use efficiency over the Beijing-Tianjin Sand Source Region of China. Guo L; Shan N; Zhang Y; Sun F; Liu W; Shi Z; Zhang Q Sci Total Environ; 2019 Nov; 690():584-595. PubMed ID: 31301499 [TBL] [Abstract][Full Text] [Related]
55. Detection and attribution of vegetation greening trend in China over the last 30 years. Piao S; Yin G; Tan J; Cheng L; Huang M; Li Y; Liu R; Mao J; Myneni RB; Peng S; Poulter B; Shi X; Xiao Z; Zeng N; Zeng Z; Wang Y Glob Chang Biol; 2015 Apr; 21(4):1601-9. PubMed ID: 25369401 [TBL] [Abstract][Full Text] [Related]
56. Modelling the increased frequency of extreme sea levels in the Ganges-Brahmaputra-Meghna delta due to sea level rise and other effects of climate change. Kay S; Caesar J; Wolf J; Bricheno L; Nicholls RJ; Saiful Islam AK; Haque A; Pardaens A; Lowe JA Environ Sci Process Impacts; 2015 Jul; 17(7):1311-22. PubMed ID: 26086045 [TBL] [Abstract][Full Text] [Related]
57. Sandy desertification change and its driving forces in western Jilin Province, North China. Fang L; Bai Z; Wei S; Yanfen H; Zongming W; Kaishan S; Dianwei L; Zhiming L Environ Monit Assess; 2008 Jan; 136(1-3):379-90. PubMed ID: 17394088 [TBL] [Abstract][Full Text] [Related]
58. Impacts of LUCC on soil properties in the riparian zones of desert oasis with remote sensing data: a case study of the middle Heihe River basin, China. Jiang P; Cheng L; Li M; Zhao R; Duan Y Sci Total Environ; 2015 Feb; 506-507():259-71. PubMed ID: 25460959 [TBL] [Abstract][Full Text] [Related]
59. Effects of grassland restoration programs on ecosystems in arid and semiarid China. Huang L; Xiao T; Zhao Z; Sun C; Liu J; Shao Q; Fan J; Wang J J Environ Manage; 2013 Mar; 117():268-75. PubMed ID: 23391757 [TBL] [Abstract][Full Text] [Related]
60. Impacts of climate change and evapotranspiration on shrinkage of Aral Sea. Huang S; Chen X; Chang C; Liu T; Huang Y; Zan C; Ma X; De Maeyer P; Van de Voorde T Sci Total Environ; 2022 Nov; 845():157203. PubMed ID: 35817104 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]