BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 28841783)

  • 21. Effect of soil organic matter content and pH on the toxicity of ZnO nanoparticles to Folsomia candida.
    Waalewijn-Kool PL; Rupp S; Lofts S; Svendsen C; van Gestel CA
    Ecotoxicol Environ Saf; 2014 Oct; 108():9-15. PubMed ID: 25038266
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of dissolved organic matter on photogenerated reactive oxygen species and metal-oxide nanoparticle toxicity.
    Li Y; Niu J; Shang E; Crittenden JC
    Water Res; 2016 Jul; 98():9-18. PubMed ID: 27064207
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transport and retention of zinc oxide nanoparticles in porous media: effects of natural organic matter versus natural organic ligands at circumneutral pH.
    Jones EH; Su C
    J Hazard Mater; 2014 Jun; 275():79-88. PubMed ID: 24853139
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Co-exposure of ZnO nanoparticles and UV radiation to Daphnia magna and Danio rerio: Combined effects rather than protection.
    Azevedo SL; Ribeiro F; Jurkschat K; Soares AM; Loureiro S
    Environ Toxicol Chem; 2016 Feb; 35(2):458-67. PubMed ID: 26275073
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantity and quality of natural organic matter influence the ecotoxicity of titanium dioxide nanoparticles.
    Seitz F; Rosenfeldt RR; Müller M; Lüderwald S; Schulz R; Bundschuh M
    Nanotoxicology; 2016 Dec; 10(10):1415-1421. PubMed ID: 27499241
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Continuous ultraviolet irradiation increases the adverse effects of photoreactive nanoparticles on the early development of Oryzias latipes.
    Shin YJ; Nam SH; An YJ
    Environ Toxicol Chem; 2016 May; 35(5):1195-200. PubMed ID: 26395674
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Toxicity of mixtures of zinc oxide and graphene oxide nanoparticles to aquatic organisms of different trophic level: particles outperform dissolved ions.
    Ye N; Wang Z; Wang S; Peijnenburg WJGM
    Nanotoxicology; 2018 Jun; 12(5):423-438. PubMed ID: 29658385
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish: acute toxicity, oxidative stress and oxidative damage.
    Xiong D; Fang T; Yu L; Sima X; Zhu W
    Sci Total Environ; 2011 Mar; 409(8):1444-52. PubMed ID: 21296382
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of water chemistry on the dissolution of ZnO nanoparticles and their toxicity to Escherichia coli.
    Li M; Lin D; Zhu L
    Environ Pollut; 2013 Feb; 173():97-102. PubMed ID: 23202638
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative toxicity of nano-ZnO and bulk ZnO suspensions to zebrafish and the effects of sedimentation, ˙OH production and particle dissolution in distilled water.
    Yu LP; Fang T; Xiong DW; Zhu WT; Sima XF
    J Environ Monit; 2011 Jul; 13(7):1975-82. PubMed ID: 21611643
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative study on toxicity of ZnO and TiO
    Bhuvaneshwari M; Sagar B; Doshi S; Chandrasekaran N; Mukherjee A
    Environ Sci Pollut Res Int; 2017 Feb; 24(6):5633-5646. PubMed ID: 28039626
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Testing ZnO nanoparticle ecotoxicity: linking time variable exposure to effects on different marine model organisms.
    Schiavo S; Oliviero M; Li J; Manzo S
    Environ Sci Pollut Res Int; 2018 Feb; 25(5):4871-4880. PubMed ID: 29199368
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The toxicity of zinc oxide nanoparticles to Lemna minor (L.) is predominantly caused by dissolved Zn.
    Chen X; O'Halloran J; Jansen MA
    Aquat Toxicol; 2016 May; 174():46-53. PubMed ID: 26918949
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparative evaluation of impact of Zn and ZnO nanoparticles on brine shrimp (Artemia salina) larvae: effects of particle size and solubility on toxicity.
    Ates M; Daniels J; Arslan Z; Farah IO; Rivera HF
    Environ Sci Process Impacts; 2013 Jan; 15(1):225-33. PubMed ID: 24058731
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Direct in situ measurement of dissolved zinc in the presence of zinc oxide nanoparticles using anodic stripping voltammetry.
    Jiang C; Hsu-Kim H
    Environ Sci Process Impacts; 2014 Nov; 16(11):2536-44. PubMed ID: 25220562
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chronic ZnO-NPs exposure at environmentally relevant concentrations results in metabolic and locomotive toxicities in Caenorhabditis elegans.
    Huang CW; Li SW; Hsiu-Chuan Liao V
    Environ Pollut; 2017 Jan; 220(Pt B):1456-1464. PubMed ID: 27839994
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genotoxic effects and gene expression changes in larval zebrafish after exposure to ZnCl2 and ZnO nanoparticles.
    Boran H; Ulutas G
    Dis Aquat Organ; 2016 Jan; 117(3):205-14. PubMed ID: 26758654
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mitigation in Multiple Effects of Graphene Oxide Toxicity in Zebrafish Embryogenesis Driven by Humic Acid.
    Chen Y; Ren C; Ouyang S; Hu X; Zhou Q
    Environ Sci Technol; 2015 Aug; 49(16):10147-54. PubMed ID: 26171725
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of natural organic matter on the transport and deposition of zinc oxide nanoparticles in saturated porous media.
    Jiang X; Tong M; Kim H
    J Colloid Interface Sci; 2012 Nov; 386(1):34-43. PubMed ID: 22840876
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dissolved organic matter affects both bioconcentration kinetics and steady-state concentrations of polycyclic aromatic hydrocarbons in zebrafish (Danio rerio).
    Li Y; Wang H; Xia X; Zhai Y; Lin H; Wen W; Wang Z
    Sci Total Environ; 2018 Oct; 639():648-656. PubMed ID: 29800856
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.