These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 28841787)

  • 41. Food waste and sewage sludge co-digestion amended with different biochars: VFA kinetics, methane yield and digestate quality assessment.
    Johnravindar D; Wong JWC; Chakraborty D; Bodedla G; Kaur G
    J Environ Manage; 2021 Jul; 290():112457. PubMed ID: 33895449
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Functional characteristic of microbial communities in large-scale biotreatment systems of food waste.
    Wang P; Qiao Z; Li X; Su Y; Xie B
    Sci Total Environ; 2020 Dec; 746():141086. PubMed ID: 32750579
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Anaerobic co-digestion of sewage sludge, food waste and yard waste: Synergistic enhancement on process stability and biogas production.
    Mu L; Zhang L; Zhu K; Ma J; Ifran M; Li A
    Sci Total Environ; 2020 Feb; 704():135429. PubMed ID: 31837868
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Performance of direct anaerobic digestion of dewatered sludge in long-term operation.
    Li H; Si D; Liu C; Feng K; Liu C
    Bioresour Technol; 2018 Feb; 250():355-364. PubMed ID: 29190592
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Three-stage anaerobic co-digestion of food waste and waste activated sludge: Identifying bacterial and methanogenic archaeal communities and their correlations with performance parameters.
    Zhang L; Loh KC; Zhang J; Mao L; Tong YW; Wang CH; Dai Y
    Bioresour Technol; 2019 Aug; 285():121333. PubMed ID: 31004947
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Simultaneous treatment of sewage sludge and food waste by the unified high-rate anaerobic digestion system.
    Kim HW; Han SK; Shin HS
    Water Sci Technol; 2006; 53(6):29-35. PubMed ID: 16749436
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of thermal pre-treatment on anaerobic co-digestion of municipal biowastes at high organic loading rate.
    Guo J; Wang W; Liu X; Lian S; Zheng L
    Chemosphere; 2014 Apr; 101():66-70. PubMed ID: 24374189
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Kinetic modelling and synergistic impact evaluation for the anaerobic co-digestion of distillers' grains and food waste by ethanol pre-fermentation.
    Yu M; Gao M; Wang L; Ren Y; Wu C; Ma H; Wang Q
    Environ Sci Pollut Res Int; 2018 Oct; 25(30):30281-30291. PubMed ID: 30155637
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Kinetic modelling of methane production during bio-electrolysis from anaerobic co-digestion of sewage sludge and food waste.
    Prajapati KB; Singh R
    Bioresour Technol; 2018 Sep; 263():491-498. PubMed ID: 29775905
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Food waste treatment by anaerobic co-digestion with saline sludge and its implications for energy recovery in Hong Kong.
    Wong JWC; Kaur G; Mehariya S; Karthikeyan OP; Chen G
    Bioresour Technol; 2018 Nov; 268():824-828. PubMed ID: 30064901
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Boosting biogas production from sewage sludge by adding small amount of agro-industrial by-products and food waste residues.
    Maragkaki AE; Fountoulakis M; Kyriakou A; Lasaridi K; Manios T
    Waste Manag; 2018 Jan; 71():605-611. PubMed ID: 28427739
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mesophilic anaerobic co-digestion of residual sludge with different lignocellulosic wastes in the batch digester.
    Zou H; Chen Y; Shi J; Zhao T; Yu Q; Yu S; Shi D; Chai H; Gu L; He Q; Ai H
    Bioresour Technol; 2018 Nov; 268():371-381. PubMed ID: 30096645
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Residual municipal solid waste as co-substrate at wastewater treatment plants: An assessment of methane yield, dewatering potential and microbial diversity.
    do Carmo Precci Lopes A; Ebner C; Gerke F; Wehner M; Robra S; Hupfauf S; Bockreis A
    Sci Total Environ; 2022 Jan; 804():149936. PubMed ID: 34509850
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Improving methane yield and quality via co-digestion of cow dung mixed with food waste.
    Awasthi SK; Joshi R; Dhar H; Verma S; Awasthi MK; Varjani S; Sarsaiya S; Zhang Z; Kumar S
    Bioresour Technol; 2018 Mar; 251():259-263. PubMed ID: 29287278
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Boosting methane generation by co-digestion of sludge with fruit and vegetable waste: Internal environment of digester and methanogenic pathway.
    Di Maria F; Barratta M
    Waste Manag; 2015 Sep; 43():130-6. PubMed ID: 26101199
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Anaerobic co-digestion of various organic wastes: Kinetic modeling and synergistic impact evaluation.
    Karki R; Chuenchart W; Surendra KC; Sung S; Raskin L; Khanal SK
    Bioresour Technol; 2022 Jan; 343():126063. PubMed ID: 34619321
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Enhanced energy recovery via separate hydrogen and methane production from two-stage anaerobic digestion of food waste with nanobubble water supplementation.
    Hou T; Zhao J; Lei Z; Shimizu K; Zhang Z
    Sci Total Environ; 2021 Mar; 761():143234. PubMed ID: 33162132
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Responses of anaerobic digestion of food waste to coupling effects of inoculum origins, organic loads and pH control under high load: Process performance and microbial characteristics.
    Zhang W; Wang X; Xing W; Li R; Yang T
    J Environ Manage; 2021 Feb; 279():111772. PubMed ID: 33310238
    [TBL] [Abstract][Full Text] [Related]  

  • 60. High-efficiency anaerobic co-digestion of food waste and mature leachate using expanded granular sludge blanket reactor.
    Liu Y; Lv Y; Cheng H; Zou L; Li YY; Liu J
    Bioresour Technol; 2022 Oct; 362():127847. PubMed ID: 36031119
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.