BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 28841975)

  • 1. Highly sensitive antibody-aptamer sensor for vascular endothelial growth factor based on hybridization chain reaction and pH meter/indicator.
    Xu H; Kou F; Ye H; Wang Z; Huang S; Liu X; Zhu X; Lin Z; Chen G
    Talanta; 2017 Dec; 175():177-182. PubMed ID: 28841975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of vascular endothelial growth factor based on rolling circle amplification as a means of signal enhancement in surface plasmon resonance.
    Chen H; Hou Y; Qi F; Zhang J; Koh K; Shen Z; Li G
    Biosens Bioelectron; 2014 Nov; 61():83-7. PubMed ID: 24858995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical aptasensors for the analysis of the vascular endothelial growth factor (VEGF).
    Freeman R; Girsh J; Jou AF; Ho JA; Hug T; Dernedde J; Willner I
    Anal Chem; 2012 Jul; 84(14):6192-8. PubMed ID: 22746189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aptamer-based biosensors and nanosensors for the detection of vascular endothelial growth factor (VEGF): A review.
    Dehghani S; Nosrati R; Yousefi M; Nezami A; Soltani F; Taghdisi SM; Abnous K; Alibolandi M; Ramezani M
    Biosens Bioelectron; 2018 Jul; 110():23-37. PubMed ID: 29579646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A high-performance VEGF aptamer functionalized polypyrrole nanotube biosensor.
    Kwon OS; Park SJ; Jang J
    Biomaterials; 2010 Jun; 31(17):4740-7. PubMed ID: 20227108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [A colorimetric method for vascular endothelial growth factor detection based on aptamer and magnetic beads].
    Liu JR; Pan YL; Zhao YP; Liu MC; Chen JH; Li CY
    Nan Fang Yi Ke Da Xue Xue Bao; 2016 Feb; 37(2):210-215. PubMed ID: 28219865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. G-quadruplex DNAzyme-based electrochemiluminescence biosensing strategy for VEGF165 detection: Combination of aptamer-target recognition and T7 exonuclease-assisted cycling signal amplification.
    Zhang H; Li M; Li C; Guo Z; Dong H; Wu P; Cai C
    Biosens Bioelectron; 2015 Dec; 74():98-103. PubMed ID: 26120816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A simple and rapid detection assay for peptides based on the specific recognition of aptamer and signal amplification of hybridization chain reaction.
    Ma C; Liu H; Tian T; Song X; Yu J; Yan M
    Biosens Bioelectron; 2016 Sep; 83():15-8. PubMed ID: 27093485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative determination of VEGF165 in cell culture medium by aptamer sandwich based chemiluminescence assay.
    Shan S; He Z; Mao S; Jie M; Yi L; Lin JM
    Talanta; 2017 Aug; 171():197-203. PubMed ID: 28551129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aptasensor designed via the stochastic tunneling-basin hopping method for biosensing of vascular endothelial growth factor.
    Yang HW; Ju SP; Cheng CH; Chen YT; Lin YS; Pang ST
    Biosens Bioelectron; 2018 Nov; 119():25-33. PubMed ID: 30098463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A signal-on nanobiosensor for VEGF
    Moghadam FM; Rahaie M
    Biosens Bioelectron; 2019 May; 132():186-195. PubMed ID: 30875630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antibody-specific aptamer-based PCR analysis for sensitive protein detection.
    Yoshida Y; Horii K; Sakai N; Masuda H; Furuichi M; Waga I
    Anal Bioanal Chem; 2009 Oct; 395(4):1089-96. PubMed ID: 19705107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A highly sensitive VEGF
    Da H; Liu H; Zheng Y; Yuan R; Chai Y
    Biosens Bioelectron; 2018 Mar; 101():213-218. PubMed ID: 29096358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitive point-of-care monitoring of cardiac biomarker myoglobin using aptamer and ubiquitous personal glucose meter.
    Wang Q; Liu F; Yang X; Wang K; Wang H; Deng X
    Biosens Bioelectron; 2015 Feb; 64():161-4. PubMed ID: 25216451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A highly sensitive colorimetric aptasensor for the detection of the vascular endothelial growth factor in human serum.
    Dong J; He L; Wang Y; Yu F; Yu S; Liu L; Wang J; Tian Y; Qu L; Han R; Wang Z; Wu Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Feb; 226():117622. PubMed ID: 31606672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glucose oxidase-initiated cascade catalysis for sensitive impedimetric aptasensor based on metal-organic frameworks functionalized with Pt nanoparticles and hemin/G-quadruplex as mimicking peroxidases.
    Zhou X; Guo S; Gao J; Zhao J; Xue S; Xu W
    Biosens Bioelectron; 2017 Dec; 98():83-90. PubMed ID: 28654887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous Sensing of Multiple Cancer Biomarkers by a Single DNA Nanoprobe in a Nanopore.
    Guo B; Song P; Zhou K; Liu L; Wu HC
    Anal Chem; 2020 Jul; 92(13):9405-9411. PubMed ID: 32539349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleic acid sensing with enzyme-DNA binding protein conjugates cascade and simple DNA nanostructures.
    Aktas GB; Skouridou V; Masip L
    Anal Bioanal Chem; 2017 May; 409(14):3623-3632. PubMed ID: 28331958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A folding-based electrochemical aptasensor for detection of vascular endothelial growth factor in human whole blood.
    Zhao S; Yang W; Lai RY
    Biosens Bioelectron; 2011 Jan; 26(5):2442-7. PubMed ID: 21081271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ amplified electrochemical aptasensing for sensitive detection of adenosine triphosphate by coupling target-induced hybridization chain reaction with the assembly of silver nanotags.
    Zhou Q; Lin Y; Lin Y; Wei Q; Chen G; Tang D
    Talanta; 2016; 146():23-8. PubMed ID: 26695229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.