These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 28842353)

  • 21. Characterization of regional and local deposition of inhaled aerosol drugs in the respiratory system by computational fluid and particle dynamics methods.
    Farkas A; Balásházy I; Szocs K
    J Aerosol Med; 2006; 19(3):329-43. PubMed ID: 17034308
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CFD simulation of aerosol delivery to a human lung via surface acoustic wave nebulization.
    Yousefi M; Pourmehran O; Gorji-Bandpy M; Inthavong K; Yeo L; Tu J
    Biomech Model Mechanobiol; 2017 Dec; 16(6):2035-2050. PubMed ID: 28735415
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In silico models of aerosol delivery to the respiratory tract - development and applications.
    Longest PW; Holbrook LT
    Adv Drug Deliv Rev; 2012 Mar; 64(4):296-311. PubMed ID: 21640772
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Computational analysis of radon progeny deposition patterns in the human respiratory system.
    Rabi R; Oufni L; Kayouh N
    J Environ Radioact; 2024 Feb; 272():107365. PubMed ID: 38171111
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of realistic airflow rate on aerosol generation by nebulizers.
    Vecellio L; Kippax P; Rouquette S; Diot P
    Int J Pharm; 2009 Apr; 371(1-2):99-105. PubMed ID: 19150494
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Current Inhalers Deliver Very Small Doses to the Lower Tracheobronchial Airways: Assessment of Healthy and Constricted Lungs.
    Walenga RL; Longest PW
    J Pharm Sci; 2016 Jan; 105(1):147-59. PubMed ID: 26852850
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Using MRI to measure aerosol deposition.
    Thompson RB; Finlay WH
    J Aerosol Med Pulm Drug Deliv; 2012 Apr; 25(2):55-62. PubMed ID: 22463490
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fundamental effects of particle morphology on lung delivery: predictions of Stokes' law and the particular relevance to dry powder inhaler formulation and development.
    Crowder TM; Rosati JA; Schroeter JD; Hickey AJ; Martonen TB
    Pharm Res; 2002 Mar; 19(3):239-45. PubMed ID: 11934228
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Augmenting regional and targeted delivery in the pulmonary acinus using magnetic particles.
    Ostrovski Y; Hofemeier P; Sznitman J
    Int J Nanomedicine; 2016; 11():3385-95. PubMed ID: 27547034
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Assessment methods of inhaled aerosols: technical aspects and applications.
    Jaafar-Maalej C; Andrieu V; Elaissari A; Fessi H
    Expert Opin Drug Deliv; 2009 Sep; 6(9):941-59. PubMed ID: 19637979
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Model of the deposition of aerosol particles in the respiratory tract of the rat. II. Hygroscopic particle deposition.
    Ferron GA; Upadhyay S; Zimmermann R; Karg E
    J Aerosol Med Pulm Drug Deliv; 2013 Apr; 26(2):101-19. PubMed ID: 23550602
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Condensational growth of combination drug-excipient submicrometer particles for targeted high efficiency pulmonary delivery: comparison of CFD predictions with experimental results.
    Longest PW; Hindle M
    Pharm Res; 2012 Mar; 29(3):707-21. PubMed ID: 21948458
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 3D phase contrast MRI in models of human airways: Validation of computational fluid dynamics simulations of steady inspiratory flow.
    Collier GJ; Kim M; Chung Y; Wild JM
    J Magn Reson Imaging; 2018 Nov; 48(5):1400-1409. PubMed ID: 29630757
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computational Models of Inhalation Therapy in Early Childhood: Therapeutic Aerosols in the Developing Acinus.
    Katan JT; Hofemeier P; Sznitman J
    J Aerosol Med Pulm Drug Deliv; 2016 Jun; 29(3):288-98. PubMed ID: 26907858
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improving aerosol drug delivery during invasive mechanical ventilation with redesigned components.
    Longest PW; Azimi M; Golshahi L; Hindle M
    Respir Care; 2014 May; 59(5):686-98. PubMed ID: 24106320
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Good Things in Small Packages: an Innovative Delivery Approach for Inhaled Insulin.
    Fink JB; Molloy L; Patton JS; Galindo-Filho VC; de Melo Barcelar J; Alcoforado L; Brandão SCS; de Andrade AD
    Pharm Res; 2017 Dec; 34(12):2568-2578. PubMed ID: 28718049
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of the generation of radiolabeled monodisperse albuterol particles using the spinning-top aerosol generator.
    Usmani OS; Biddiscombe MF; Underwood SR; Barnes PJ
    J Nucl Med; 2004 Jan; 45(1):69-73. PubMed ID: 14734675
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Computationally efficient analysis of particle transport and deposition in a human whole-lung-airway model. Part I: Theory and model validation.
    Kolanjiyil AV; Kleinstreuer C
    Comput Biol Med; 2016 Dec; 79():193-204. PubMed ID: 27810625
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Three-dimensional computational fluid dynamics simulations of particle deposition in the tracheobronchial tree.
    Isaacs KK; Schlesinger RB; Martonen TB
    J Aerosol Med; 2006; 19(3):344-52. PubMed ID: 17034309
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The use of computational fluid dynamics in inhaler design.
    Ruzycki CA; Javaheri E; Finlay WH
    Expert Opin Drug Deliv; 2013 Mar; 10(3):307-23. PubMed ID: 23289401
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.