These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 28842356)

  • 1. Impact of microRNAs on ischemic stroke: From pre- to post-disease.
    Li G; Morris-Blanco KC; Lopez MS; Yang T; Zhao H; Vemuganti R; Luo Y
    Prog Neurobiol; 2018; 163-164():59-78. PubMed ID: 28842356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Can miRNAs Be Considered as Diagnostic and Therapeutic Molecules in Ischemic Stroke Pathogenesis?-Current Status.
    Bulygin KV; Beeraka NM; Saitgareeva AR; Nikolenko VN; Gareev I; Beylerli O; Akhmadeeva LR; Mikhaleva LM; Torres Solis LF; Solís Herrera A; Avila-Rodriguez MF; Somasundaram SG; Kirkland CE; Aliev G
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32937836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The interplay of microRNAs and post-ischemic glutamate excitotoxicity: an emergent research field in stroke medicine.
    Majdi A; Mahmoudi J; Sadigh-Eteghad S; Farhoudi M; Shotorbani SS
    Neurol Sci; 2016 Nov; 37(11):1765-1771. PubMed ID: 27350638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. microRNAs: innovative targets for cerebral ischemia and stroke.
    Ouyang YB; Stary CM; Yang GY; Giffard R
    Curr Drug Targets; 2013 Jan; 14(1):90-101. PubMed ID: 23170800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular Pathogenesis of Ischemic and Hemorrhagic Strokes: Background and Therapeutic Approaches.
    Maida CD; Norrito RL; Rizzica S; Mazzola M; Scarantino ER; Tuttolomondo A
    Int J Mol Sci; 2024 Jun; 25(12):. PubMed ID: 38928006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. microRNAs in stroke pathogenesis.
    Tan JR; Koo YX; Kaur P; Liu F; Armugam A; Wong PT; Jeyaseelan K
    Curr Mol Med; 2011 Mar; 11(2):76-92. PubMed ID: 21342133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Interplay of MicroRNAs in the Inflammatory Mechanisms Following Ischemic Stroke.
    Khoshnam SE; Winlow W; Farzaneh M
    J Neuropathol Exp Neurol; 2017 Jul; 76(7):548-561. PubMed ID: 28535304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Astrocytes, therapeutic targets for neuroprotection and neurorestoration in ischemic stroke.
    Liu Z; Chopp M
    Prog Neurobiol; 2016 Sep; 144():103-20. PubMed ID: 26455456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electroacupuncture Alleviates Brain Damage Through Targeting of Neuronal Calcium Sensor 1 by miR-191a-5p After Ischemic Stroke.
    Zhou H; Yang C; Bai F; Ma Z; Wang J; Wang F; Li F; Wang Q; Xiong L
    Rejuvenation Res; 2017 Dec; 20(6):492-505. PubMed ID: 28537507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Potential Role of MicroRNA-124 in Cerebral Ischemia Injury.
    Liu X; Feng Z; Du L; Huang Y; Ge J; Deng Y; Mei Z
    Int J Mol Sci; 2019 Dec; 21(1):. PubMed ID: 31878035
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting vascular inflammation in ischemic stroke: Recent developments on novel immunomodulatory approaches.
    Shekhar S; Cunningham MW; Pabbidi MR; Wang S; Booz GW; Fan F
    Eur J Pharmacol; 2018 Aug; 833():531-544. PubMed ID: 29935175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tau as a potential therapeutic target for ischemic stroke.
    Chen X; Jiang H
    Aging (Albany NY); 2019 Dec; 11(24):12827-12843. PubMed ID: 31841442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Promoting brain remodeling to aid in stroke recovery.
    Zhang ZG; Chopp M
    Trends Mol Med; 2015 Sep; 21(9):543-8. PubMed ID: 26278490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Striatal stimulation nurtures endogenous neurogenesis and angiogenesis in chronic-phase ischemic stroke rats.
    Morimoto T; Yasuhara T; Kameda M; Baba T; Kuramoto S; Kondo A; Takahashi K; Tajiri N; Wang F; Meng J; Ji YW; Kadota T; Maruo T; Kinugasa K; Miyoshi Y; Shingo T; Borlongan CV; Date I
    Cell Transplant; 2011; 20(7):1049-64. PubMed ID: 21092409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Roles of MicroRNAs in Stroke: Possible Therapeutic Targets.
    Xu W; Gao L; Zheng J; Li T; Shao A; Reis C; Chen S; Zhang J
    Cell Transplant; 2018 Dec; 27(12):1778-1788. PubMed ID: 29871520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The emerging role of microRNA in stroke.
    Koutsis G; Siasos G; Spengos K
    Curr Top Med Chem; 2013; 13(13):1573-88. PubMed ID: 23745809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidative stress--assassin behind the ischemic stroke.
    Pradeep H; Diya JB; Shashikumar S; Rajanikant GK
    Folia Neuropathol; 2012; 50(3):219-30. PubMed ID: 23023336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MicroRNA-493 regulates angiogenesis in a rat model of ischemic stroke by targeting MIF.
    Li Q; He Q; Baral S; Mao L; Li Y; Jin H; Chen S; An T; Xia Y; Hu B
    FEBS J; 2016 May; 283(9):1720-33. PubMed ID: 26929185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellular and Molecular Mechanisms Underlying Non-Pharmaceutical Ischemic Stroke Therapy in Aged Subjects.
    Sandu RE; Dumbrava D; Surugiu R; Glavan DG; Gresita A; Petcu EB
    Int J Mol Sci; 2017 Dec; 19(1):. PubMed ID: 29286319
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sex differences in miRNA as therapies for ischemic stroke.
    Sohrabji F; Selvamani A
    Neurochem Int; 2019 Jul; 127():56-63. PubMed ID: 30391509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.