BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 28842437)

  • 21. Tgfβ-Smad and MAPK signaling mediate scleraxis and proteoglycan expression in heart valves.
    Barnette DN; Hulin A; Ahmed AS; Colige AC; Azhar M; Lincoln J
    J Mol Cell Cardiol; 2013 Dec; 65():137-46. PubMed ID: 24157418
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Relationships between melanocytes, mechanical properties and extracellular matrix composition in mouse heart valves.
    Carneiro F; Kruithof BP; Balani K; Agarwal A; Gaussin V; Kos L
    J Long Term Eff Med Implants; 2015; 25(1-2):17-26. PubMed ID: 25955004
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural assessments in decellularized extracellular matrix of porcine semilunar heart valves: Evaluation of cell niches.
    Roderjan JG; de Noronha L; Stimamiglio MA; Correa A; Leitolis A; Bueno RRL; da Costa FDA
    Xenotransplantation; 2019 May; 26(3):e12503. PubMed ID: 30770594
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fluid flow forces and rhoA regulate fibrous development of the atrioventricular valves.
    Tan H; Biechler S; Junor L; Yost MJ; Dean D; Li J; Potts JD; Goodwin RL
    Dev Biol; 2013 Feb; 374(2):345-56. PubMed ID: 23261934
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pregnancy-induced remodeling of heart valves.
    Pierlot CM; Moeller AD; Lee JM; Wells SM
    Am J Physiol Heart Circ Physiol; 2015 Nov; 309(9):H1565-78. PubMed ID: 26371175
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Twist1 directly regulates genes that promote cell proliferation and migration in developing heart valves.
    Lee MP; Yutzey KE
    PLoS One; 2011; 6(12):e29758. PubMed ID: 22242143
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Muscleblind-like 1 is required for normal heart valve development in vivo.
    Coram RJ; Stillwagon SJ; Guggilam A; Jenkins MW; Swanson MS; Ladd AN
    BMC Dev Biol; 2015 Oct; 15():36. PubMed ID: 26472242
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluation of the matrix-synthesis potential of crosslinked hyaluronan gels for tissue engineering of aortic heart valves.
    Ramamurthi A; Vesely I
    Biomaterials; 2005 Mar; 26(9):999-1010. PubMed ID: 15369688
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transforming growth factor β, bone morphogenetic protein, and vascular endothelial growth factor mediate phenotype maturation and tissue remodeling by embryonic valve progenitor cells: relevance for heart valve tissue engineering.
    Chiu YN; Norris RA; Mahler G; Recknagel A; Butcher JT
    Tissue Eng Part A; 2010 Nov; 16(11):3375-83. PubMed ID: 20629541
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Maturation of heart valve cell populations during postnatal remodeling.
    Hulin A; Hortells L; Gomez-Stallons MV; O'Donnell A; Chetal K; Adam M; Lancellotti P; Oury C; Potter SS; Salomonis N; Yutzey KE
    Development; 2019 Mar; 146(12):. PubMed ID: 30796046
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Periostin induces intracellular cross-talk between kinases and hyaluronan in atrioventricular valvulogenesis.
    Ghatak S; Misra S; Norris RA; Moreno-Rodriguez RA; Hoffman S; Levine RA; Hascall VC; Markwald RR
    J Biol Chem; 2014 Mar; 289(12):8545-61. PubMed ID: 24469446
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hypoxic culture of bone marrow-derived mesenchymal stromal stem cells differentially enhances in vitro chondrogenesis within cell-seeded collagen and hyaluronic acid porous scaffolds.
    Bornes TD; Jomha NM; Mulet-Sierra A; Adesida AB
    Stem Cell Res Ther; 2015 Apr; 6(1):84. PubMed ID: 25900045
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sox9 transcriptionally represses Spp1 to prevent matrix mineralization in maturing heart valves and chondrocytes.
    Peacock JD; Huk DJ; Ediriweera HN; Lincoln J
    PLoS One; 2011; 6(10):e26769. PubMed ID: 22046352
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cadherin-11 expression patterns in heart valves associate with key functions during embryonic cushion formation, valve maturation and calcification.
    Zhou J; Bowen C; Lu G; Knapp Iii C; Recknagel A; Norris RA; Butcher JT
    Cells Tissues Organs; 2013; 198(4):300-10. PubMed ID: 24356423
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Form and function of developing heart valves: coordination by extracellular matrix and growth factor signaling.
    Schroeder JA; Jackson LF; Lee DC; Camenisch TD
    J Mol Med (Berl); 2003 Jul; 81(7):392-403. PubMed ID: 12827270
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Differential cell-matrix responses in hypoxia-stimulated aortic versus mitral valves.
    Sapp MC; Krishnamurthy VK; Puperi DS; Bhatnagar S; Fatora G; Mutyala N; Grande-Allen KJ
    J R Soc Interface; 2016 Dec; 13(125):. PubMed ID: 28003526
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Wnt signaling in heart valve development and osteogenic gene induction.
    Alfieri CM; Cheek J; Chakraborty S; Yutzey KE
    Dev Biol; 2010 Feb; 338(2):127-35. PubMed ID: 19961844
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Endothelial to mesenchymal transformation is induced by altered extracellular matrix in aortic valve endothelial cells.
    Dahal S; Huang P; Murray BT; Mahler GJ
    J Biomed Mater Res A; 2017 Oct; 105(10):2729-2741. PubMed ID: 28589644
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hypoxia-mediated regulation of the secretory properties of mitral valve interstitial cells.
    Salhiyyah K; Sarathchandra P; Latif N; Yacoub MH; Chester AH
    Am J Physiol Heart Circ Physiol; 2017 Jul; 313(1):H14-H23. PubMed ID: 28314761
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Shared gene expression profiles in developing heart valves and osteoblast progenitor cells.
    Chakraborty S; Cheek J; Sakthivel B; Aronow BJ; Yutzey KE
    Physiol Genomics; 2008 Sep; 35(1):75-85. PubMed ID: 18612084
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.