These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 28842555)

  • 1. Hierarchically self-assembled hexagonal honeycomb and kagome superlattices of binary 1D colloids.
    Lim SH; Lee T; Oh Y; Narayanan T; Sung BJ; Choi SM
    Nat Commun; 2017 Aug; 8(1):360. PubMed ID: 28842555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural characterization of self-assembled multifunctional binary nanoparticle superlattices.
    Shevchenko EV; Talapin DV; Murray CB; O'Brien S
    J Am Chem Soc; 2006 Mar; 128(11):3620-37. PubMed ID: 16536535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly ordered and highly aligned two-dimensional binary superlattice of a SWNT/cylindrical-micellar system.
    Lim SH; Jang HS; Ha JM; Kim TH; Kwasniewski P; Narayanan T; Jin KS; Choi SM
    Angew Chem Int Ed Engl; 2014 Nov; 53(46):12548-54. PubMed ID: 25244635
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binary and ternary superlattices self-assembled from colloidal nanodisks and nanorods.
    Paik T; Diroll BT; Kagan CR; Murray CB
    J Am Chem Soc; 2015 May; 137(20):6662-9. PubMed ID: 25927895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binary Superlattice Design by Controlling DNA-Mediated Interactions.
    Song M; Ding Y; Zerze H; Snyder MA; Mittal J
    Langmuir; 2018 Jan; 34(3):991-998. PubMed ID: 29111738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discovery of two-dimensional binary nanoparticle superlattices using global Monte Carlo optimization.
    Zhou Y; Arya G
    Nat Commun; 2022 Dec; 13(1):7976. PubMed ID: 36581611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunable porous nanoallotropes prepared by post-assembly etching of binary nanoparticle superlattices.
    Udayabhaskararao T; Altantzis T; Houben L; Coronado-Puchau M; Langer J; Popovitz-Biro R; Liz-Marzán LM; Vuković L; Král P; Bals S; Klajn R
    Science; 2017 Oct; 358(6362):514-518. PubMed ID: 29074773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for a C14 Frank-Kasper Phase in One-Size Gold Nanoparticle Superlattices.
    Hajiw S; Pansu B; Sadoc JF
    ACS Nano; 2015 Aug; 9(8):8116-21. PubMed ID: 26230645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energetic and entropic contributions to self-assembly of binary nanocrystal superlattices: temperature as the structure-directing factor.
    Bodnarchuk MI; Kovalenko MV; Heiss W; Talapin DV
    J Am Chem Soc; 2010 Sep; 132(34):11967-77. PubMed ID: 20701285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binary nanoparticle superlattices of soft-particle systems.
    Travesset A
    Proc Natl Acad Sci U S A; 2015 Aug; 112(31):9563-7. PubMed ID: 26195799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Entropy-driven formation of binary semiconductor-nanocrystal superlattices.
    Evers WH; De Nijs B; Filion L; Castillo S; Dijkstra M; Vanmaekelbergh D
    Nano Lett; 2010 Oct; 10(10):4235-41. PubMed ID: 20815407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of Softness on the Stability of Binary Colloidal Crystals.
    LaCour RA; Adorf CS; Dshemuchadse J; Glotzer SC
    ACS Nano; 2019 Dec; 13(12):13829-13842. PubMed ID: 31692332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthetically programmable nanoparticle superlattices using a hollow three-dimensional spacer approach.
    Auyeung E; Cutler JI; Macfarlane RJ; Jones MR; Wu J; Liu G; Zhang K; Osberg KD; Mirkin CA
    Nat Nanotechnol; 2011 Dec; 7(1):24-8. PubMed ID: 22157725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic assembly and annealing of colloidal lattices and superlattices.
    Tierno P
    Langmuir; 2014 Jul; 30(26):7670-5. PubMed ID: 24941202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of three-dimensionally interconnected nanoparticle superlattices and their lithium-ion storage properties.
    Jiao Y; Han D; Ding Y; Zhang X; Guo G; Hu J; Yang D; Dong A
    Nat Commun; 2015 Mar; 6():6420. PubMed ID: 25739732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase Diagram and Structure Map of Binary Nanoparticle Superlattices from a Lennard-Jones Model.
    Ren S; Sun Y; Zhang F; Travesset A; Wang CZ; Ho KM
    ACS Nano; 2020 Jun; 14(6):6795-6802. PubMed ID: 32479719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generic phase diagram of binary superlattices.
    Tkachenko AV
    Proc Natl Acad Sci U S A; 2016 Sep; 113(37):10269-74. PubMed ID: 27566403
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quasicrystalline order in self-assembled binary nanoparticle superlattices.
    Talapin DV; Shevchenko EV; Bodnarchuk MI; Ye X; Chen J; Murray CB
    Nature; 2009 Oct; 461(7266):964-7. PubMed ID: 19829378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation Mechanism of Well-Ordered Densely Packed Nanoparticle Superlattices Deposited from Gas Phase on Template-Free Surfaces.
    Liu C; Liu F; Jin C; Zhang S; Zhang L; Han M
    Nanoscale Res Lett; 2021 Nov; 16(1):172. PubMed ID: 34850309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Site-specific patterning of highly ordered nanocrystal superlattices through biomolecular surface confinement.
    Noh H; Choi C; Hung AM; Jin S; Cha JN
    ACS Nano; 2010 Sep; 4(9):5076-80. PubMed ID: 20718405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.