BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

941 related articles for article (PubMed ID: 28842577)

  • 21. Nanocatalytic Tumor Therapy by Biomimetic Dual Inorganic Nanozyme-Catalyzed Cascade Reaction.
    Gao S; Lin H; Zhang H; Yao H; Chen Y; Shi J
    Adv Sci (Weinh); 2019 Feb; 6(3):1801733. PubMed ID: 31168441
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Combining Cobalt Ferrite Nanozymes with a Natural Enzyme to Reshape the Tumor Microenvironment for Boosted Cascade Enzyme-Like Activities.
    Chang J; Qin X; Li S; He F; Gai S; Ding H; Yang P
    ACS Appl Mater Interfaces; 2022 Oct; 14(40):45217-45228. PubMed ID: 36190449
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Degradable Tumor-Responsive Iron-Doped Phosphate-Based Glass Nanozyme for H
    Yao Y; Wang Z; Cao Q; Li H; Ge S; Liu J; Sun P; Liu Z; Wu Y; Wang W; Liu J
    ACS Appl Mater Interfaces; 2022 Apr; 14(15):17153-17163. PubMed ID: 35394283
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Size shrinkable drug delivery nanosystems and priming the tumor microenvironment for deep intratumoral penetration of nanoparticles.
    Niu Y; Zhu J; Li Y; Shi H; Gong Y; Li R; Huo Q; Ma T; Liu Y
    J Control Release; 2018 May; 277():35-47. PubMed ID: 29545106
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tumor Microenvironment-Enabled Nanotherapy.
    Wang L; Huo M; Chen Y; Shi J
    Adv Healthc Mater; 2018 Apr; 7(8):e1701156. PubMed ID: 29283221
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Advanced biomimetic nanoreactor for specifically killing tumor cells through multi-enzyme cascade.
    Liu W; Wu J; Ji X; Ma Y; Liu L; Zong X; Yang H; Dai J; Chen X; Xue W
    Theranostics; 2020; 10(14):6245-6260. PubMed ID: 32483451
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An injectable nanoparticle generator enhances delivery of cancer therapeutics.
    Xu R; Zhang G; Mai J; Deng X; Segura-Ibarra V; Wu S; Shen J; Liu H; Hu Z; Chen L; Huang Y; Koay E; Huang Y; Liu J; Ensor JE; Blanco E; Liu X; Ferrari M; Shen H
    Nat Biotechnol; 2016 Apr; 34(4):414-8. PubMed ID: 26974511
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Shrapnel nanoparticles loading docetaxel inhibit metastasis and growth of breast cancer.
    Xu P; Meng Q; Sun H; Yin Q; Yu H; Zhang Z; Cao M; Zhang Y; Li Y
    Biomaterials; 2015 Sep; 64():10-20. PubMed ID: 26106797
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Urchin-Shaped Metal Organic/Hydrogen-Bonded Framework Nanocomposite as a Multifunctional Nanoreactor for Catalysis-Enhanced Synergetic Therapy.
    Hu C; Wang J; Liu S; Cai L; Zhou Y; Liu X; Wang M; Liu Z; Pang M
    ACS Appl Mater Interfaces; 2021 Feb; 13(4):4825-4834. PubMed ID: 33496168
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Promoting Oxidative Stress in Cancer Starvation Therapy by Site-Specific Startup of Hyaluronic Acid-Enveloped Dual-Catalytic Nanoreactors.
    Yao Z; Zhang B; Liang T; Ding J; Min Q; Zhu JJ
    ACS Appl Mater Interfaces; 2019 May; 11(21):18995-19005. PubMed ID: 31058483
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nanotherapy Targeting the Tumor Microenvironment.
    Gong BS; Wang R; Xu HX; Miao MY; Yao ZZ
    Curr Cancer Drug Targets; 2019; 19(7):525-533. PubMed ID: 30569855
    [TBL] [Abstract][Full Text] [Related]  

  • 32. New Strategies in Cancer Nanomedicine.
    Tong R; Kohane DS
    Annu Rev Pharmacol Toxicol; 2016; 56():41-57. PubMed ID: 26514197
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nanocatalysts-augmented Fenton chemical reaction for nanocatalytic tumor therapy.
    Qian X; Zhang J; Gu Z; Chen Y
    Biomaterials; 2019 Aug; 211():1-13. PubMed ID: 31075521
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanomedicines Targeting the Tumor Microenvironment.
    Tong R; Langer R
    Cancer J; 2015; 21(4):314-21. PubMed ID: 26222084
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Captopril improves tumor nanomedicine delivery by increasing tumor blood perfusion and enlarging endothelial gaps in tumor blood vessels.
    Zhang B; Jiang T; Tuo Y; Jin K; Luo Z; Shi W; Mei H; Hu Y; Pang Z; Jiang X
    Cancer Lett; 2017 Dec; 410():12-19. PubMed ID: 28939029
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nano magnetic liposomes-encapsulated parthenolide and glucose oxidase for ultra-efficient synergistic antitumor therapy.
    Gao W; Wei S; Li Z; Li L; Zhang X; Li C; Gao D
    Nanotechnology; 2020 Aug; 31(35):355104. PubMed ID: 32403097
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanomedicine as a potent strategy in melanoma tumor microenvironment.
    Pautu V; Leonetti D; Lepeltier E; Clere N; Passirani C
    Pharmacol Res; 2017 Dec; 126():31-53. PubMed ID: 28223185
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ruthenium-loaded mesoporous silica as tumor microenvironment-response nano-fenton reactors for precise cancer therapy.
    Sun D; Wang Z; Zhang P; Yin C; Wang J; Sun Y; Chen Y; Wang W; Sun B; Fan C
    J Nanobiotechnology; 2021 Apr; 19(1):98. PubMed ID: 33827604
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Targeting tumor microenvironment with PEG-based amphiphilic nanoparticles to overcome chemoresistance.
    Chen S; Yang K; Tuguntaev RG; Mozhi A; Zhang J; Wang PC; Liang XJ
    Nanomedicine; 2016 Feb; 12(2):269-86. PubMed ID: 26707818
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nanomedicines for the treatment of hematological malignancies.
    Deshantri AK; Varela Moreira A; Ecker V; Mandhane SN; Schiffelers RM; Buchner M; Fens MHAM
    J Control Release; 2018 Oct; 287():194-215. PubMed ID: 30165140
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 48.