BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

941 related articles for article (PubMed ID: 28842577)

  • 41. Biodegradable, polymeric nanoparticle delivery systems for cancer therapy.
    Pridgen EM; Langer R; Farokhzad OC
    Nanomedicine (Lond); 2007 Oct; 2(5):669-80. PubMed ID: 17976029
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Delta-like ligand 4-targeted nanomedicine for antiangiogenic cancer therapy.
    Liu YR; Guan YY; Luan X; Lu Q; Wang C; Liu HJ; Gao YG; Yang SC; Dong X; Chen HZ; Fang C
    Biomaterials; 2015 Feb; 42():161-71. PubMed ID: 25542804
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Facile engineering of silk fibroin capped AuPt bimetallic nanozyme responsive to tumor microenvironmental factors for enhanced nanocatalytic therapy.
    Yang R; Fu S; Li R; Zhang L; Xu Z; Cao Y; Cui H; Kang Y; Xue P
    Theranostics; 2021; 11(1):107-116. PubMed ID: 33391464
    [No Abstract]   [Full Text] [Related]  

  • 44. Biodegradable cascade nanocatalysts enable tumor-microenvironment remodeling for controllable CO release and targeted/synergistic cancer nanotherapy.
    Wu J; Meng Z; Exner AA; Cai X; Xie X; Hu B; Chen Y; Zheng Y
    Biomaterials; 2021 Sep; 276():121001. PubMed ID: 34274775
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Enzyme/inorganic nanoparticle dual-loaded animal protein/plant protein composite nanospheres and their synergistic effect in cancer therapy.
    Chen Q; Wu M; Yao J; Shao Z; Chen X
    J Mater Chem B; 2023 May; 11(20):4529-4538. PubMed ID: 37161762
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Tumor-targeting and microenvironment-responsive smart nanoparticles for combination therapy of antiangiogenesis and apoptosis.
    Huang S; Shao K; Liu Y; Kuang Y; Li J; An S; Guo Y; Ma H; Jiang C
    ACS Nano; 2013 Mar; 7(3):2860-71. PubMed ID: 23451830
    [TBL] [Abstract][Full Text] [Related]  

  • 47. To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nanomedicine?
    Danhier F
    J Control Release; 2016 Dec; 244(Pt A):108-121. PubMed ID: 27871992
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A dual-catalytic nanoreactor for synergistic chemodynamic-starvation therapy toward tumor metastasis suppression.
    Zhang H; Lu F; Pan W; Ge Y; Cui B; Gong S; Li N; Tang B
    Biomater Sci; 2021 May; 9(10):3814-3820. PubMed ID: 33881052
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Biodegradable 2D Fe-Al Hydroxide for Nanocatalytic Tumor-Dynamic Therapy with Tumor Specificity.
    Cao Z; Zhang L; Liang K; Cheong S; Boyer C; Gooding JJ; Chen Y; Gu Z
    Adv Sci (Weinh); 2018 Nov; 5(11):1801155. PubMed ID: 30479938
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Role of integrated cancer nanomedicine in overcoming drug resistance.
    Iyer AK; Singh A; Ganta S; Amiji MM
    Adv Drug Deliv Rev; 2013 Nov; 65(13-14):1784-802. PubMed ID: 23880506
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Biodegradable Hollow Mesoporous Silica Nanoparticles for Regulating Tumor Microenvironment and Enhancing Antitumor Efficiency.
    Kong M; Tang J; Qiao Q; Wu T; Qi Y; Tan S; Gao X; Zhang Z
    Theranostics; 2017; 7(13):3276-3292. PubMed ID: 28900509
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Comprehensively priming the tumor microenvironment by cancer-associated fibroblast-targeted liposomes for combined therapy with cancer cell-targeted chemotherapeutic drug delivery system.
    Chen B; Dai W; Mei D; Liu T; Li S; He B; He B; Yuan L; Zhang H; Wang X; Zhang Q
    J Control Release; 2016 Nov; 241():68-80. PubMed ID: 27641831
    [TBL] [Abstract][Full Text] [Related]  

  • 53. pH-sensitive nano-systems for drug delivery in cancer therapy.
    Liu J; Huang Y; Kumar A; Tan A; Jin S; Mozhi A; Liang XJ
    Biotechnol Adv; 2014; 32(4):693-710. PubMed ID: 24309541
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Drug-induced co-assembly of albumin/catalase as smart nano-theranostics for deep intra-tumoral penetration, hypoxia relieve, and synergistic combination therapy.
    Chen Q; Chen J; Liang C; Feng L; Dong Z; Song X; Song G; Liu Z
    J Control Release; 2017 Oct; 263():79-89. PubMed ID: 27840167
    [TBL] [Abstract][Full Text] [Related]  

  • 55. "Manganese Extraction" Strategy Enables Tumor-Sensitive Biodegradability and Theranostics of Nanoparticles.
    Yu L; Chen Y; Wu M; Cai X; Yao H; Zhang L; Chen H; Shi J
    J Am Chem Soc; 2016 Aug; 138(31):9881-94. PubMed ID: 27441571
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nanomedicine: Downsizing tumour therapeutics.
    Cheng CJ; Saltzman WM
    Nat Nanotechnol; 2012 Jun; 7(6):346-7. PubMed ID: 22669087
    [No Abstract]   [Full Text] [Related]  

  • 57. Nanoparticle strategies for cancer therapeutics: Nucleic acids, polyamines, bovine serum amine oxidase and iron oxide nanoparticles (Review).
    Agostinelli E; Vianello F; Magliulo G; Thomas T; Thomas TJ
    Int J Oncol; 2015 Jan; 46(1):5-16. PubMed ID: 25333509
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Tumor-targeted delivery of paclitaxel using low density lipoprotein-mimetic solid lipid nanoparticles.
    Kim JH; Kim Y; Bae KH; Park TG; Lee JH; Park K
    Mol Pharm; 2015 Apr; 12(4):1230-41. PubMed ID: 25686010
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Polymeric Nanomedicine for Combined Gene/Chemotherapy Elicits Enhanced Tumor Suppression.
    Xu B; Xia S; Wang F; Jin Q; Yu T; He L; Chen Y; Liu Y; Li S; Tan X; Ren K; Yao S; Zeng J; Song X
    Mol Pharm; 2016 Feb; 13(2):663-76. PubMed ID: 26695934
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Virus-Like Fe
    Zhao Y; Ding B; Xiao X; Jiang F; Wang M; Hou Z; Xing B; Teng B; Cheng Z; Ma P; Lin J
    ACS Appl Mater Interfaces; 2020 Mar; 12(10):11320-11328. PubMed ID: 32067461
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 48.