These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 28842626)

  • 21. High-Q Fano Resonance in Terahertz Frequency Based on an Asymmetric Metamaterial Resonator.
    Xie Q; Dong GX; Wang BX; Huang WQ
    Nanoscale Res Lett; 2018 Sep; 13(1):294. PubMed ID: 30242559
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Compact wideband plasmonic filter with flat-top transmission response based on corrugated metal-insulator-metal ring resonator.
    Yang L; Zhou YJ; Zhang C; Xiao QX
    Sci Rep; 2017 Oct; 7(1):14237. PubMed ID: 29079760
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Localized Spoof Surface Plasmons based on Closed Subwavelength High Contrast Gratings: Concept and Microwave-Regime Realizations.
    Li Z; Xu B; Liu L; Xu J; Chen C; Gu C; Zhou Y
    Sci Rep; 2016 Jun; 6():27158. PubMed ID: 27251026
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynamic metamaterial based on the graphene split ring high-Q Fano-resonnator for sensing applications.
    Tang W; Wang L; Chen X; Liu C; Yu A; Lu W
    Nanoscale; 2016 Aug; 8(33):15196-204. PubMed ID: 27337105
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dispersion-tunable designer-plasmonic resonator with enhanced high-order resonances.
    Gao F; Gao Z; Shi X; Yang Z; Lin X; Zhang B
    Opt Express; 2015 Mar; 23(5):6896-902. PubMed ID: 25836909
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Theoretical investigations on microwave Fano resonances in 3D-printable hollow dielectric resonators.
    Lee E; Seo IC; Jeong HY; An SC; Jun YC
    Sci Rep; 2017 Nov; 7(1):16186. PubMed ID: 29170527
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reconfigurable all-dielectric metamaterial frequency selective surface based on high-permittivity ceramics.
    Li L; Wang J; Wang J; Ma H; Du H; Zhang J; Qu S; Xu Z
    Sci Rep; 2016 Apr; 6():24178. PubMed ID: 27052098
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electromagnetically induced transparency metamaterial based on spoof localized surface plasmons at terahertz frequencies.
    Liao Z; Liu S; Ma HF; Li C; Jin B; Cui TJ
    Sci Rep; 2016 Jun; 6():27596. PubMed ID: 27277417
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Near-field spectroscopy and tuning of sub-surface modes in plasmonic terahertz resonators.
    Mitrofanov O; Todorov Y; Gacemi D; Mottaghizadeh A; Sirtori C; Brener I; Reno JL
    Opt Express; 2018 Mar; 26(6):7437-7450. PubMed ID: 29609298
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Impact of Substrate and Bright Resonances on Group Velocity in Metamaterial without Dark Resonator.
    Hokmabadi MP; Kim JH; Rivera E; Kung P; Kim SM
    Sci Rep; 2015 Sep; 5():14373. PubMed ID: 26395071
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tunable Lattice Coupling of Multipole Plasmon Modes and Near-Field Enhancement in Closely Spaced Gold Nanorod Arrays.
    Huang Y; Zhang X; Ringe E; Hou M; Ma L; Zhang Z
    Sci Rep; 2016 Mar; 6():23159. PubMed ID: 26983501
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Simultaneous excitation of extremely high-Q-factor trapped and octupolar modes in terahertz metamaterials.
    Yang S; Tang C; Liu Z; Wang B; Wang C; Li J; Wang L; Gu C
    Opt Express; 2017 Jul; 25(14):15938-15946. PubMed ID: 28789104
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Magnetic annihilation of the dark mode in a strongly coupled bright-dark terahertz metamaterial.
    Manjappa M; Turaga SP; Srivastava YK; Bettiol AA; Singh R
    Opt Lett; 2017 Jun; 42(11):2106-2109. PubMed ID: 28569856
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Observation of Supercavity Modes in Subwavelength Dielectric Resonators.
    Odit M; Koshelev K; Gladyshev S; Ladutenko K; Kivshar Y; Bogdanov A
    Adv Mater; 2021 Jan; 33(1):e2003804. PubMed ID: 33169472
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Design of Wideband Bandpass Filter Based on Corrugated Disk Resonator with Multiple Resonant Modes.
    Yang Q; Liu S; Shi H; Xu KD; Dai X; Du H; Zhang A
    Materials (Basel); 2021 May; 14(10):. PubMed ID: 34067867
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nonlinear Surface Lattice Resonance in Plasmonic Nanoparticle Arrays.
    Michaeli L; Keren-Zur S; Avayu O; Suchowski H; Ellenbogen T
    Phys Rev Lett; 2017 Jun; 118(24):243904. PubMed ID: 28665641
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Direct excitation of dark plasmonic resonances under visible light at normal incidence.
    Gu Y; Qin F; Yang JK; Yeo SP; Qiu CW
    Nanoscale; 2014 Feb; 6(4):2106-11. PubMed ID: 24435813
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Double Fano resonances due to interplay of electric and magnetic plasmon modes in planar plasmonic structure with high sensing sensitivity.
    Wang J; Fan C; He J; Ding P; Liang E; Xue Q
    Opt Express; 2013 Jan; 21(2):2236-44. PubMed ID: 23389204
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electromagnetically induced absorption in a three-resonator metasurface system.
    Zhang X; Xu N; Qu K; Tian Z; Singh R; Han J; Agarwal GS; Zhang W
    Sci Rep; 2015 May; 5():10737. PubMed ID: 26023061
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sub-wavelength Unidirectional Antenna Realized by Stacked Spoof Localized Surface Plasmon Resonators.
    Qin F; Zhang Q; Xiao JJ
    Sci Rep; 2016 Jul; 6():29773. PubMed ID: 27405356
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.